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RECENT ADVANCES IN 'COHERENT OPTICS: 
F ILTERING O F  SPATIAL FREQUENCIES; HOLOGRAPHY 

by 
Serge Lowenthal 

Yves Belvaux 

Compagnie Generale de Telegraphic Sans Fil (CSF) 
(Genera I W i re less Telegraphy Company) 

New applications of coherent light are presented 

a) Holography: recording of three-dimensional objects; diffuse illumi- 
nation interferometry; reproduction of holograms; Fourier-transform holography 
and geometrical properties of holograms; 

b) Spatial filtering: optical data processing, especially pattern recogni- 
tion; automatic reading of characters, identification of fingerprints and other 
signals. 

INTRODUCTION 

Coherent optics is not a new field of physics: ever since Fresnel at the 
beginning of the 19th century there has been a succession of studies on luminous 
interference and diffraction phenomena. 

However, the appearance in 1961 of the gas laser marks a discontinuity 
in this movement because of the rapid and considerable progress which has been 
accomplished since then in the field of coherent optics. 

Two methods have particularly benefited from the increase in luminance, 
and in temporal and spatial coherence brought about by laser, compared with 
the classical sources: 

a) The filtering of spatial frequencies in coherent light, thanks to the 
work of A. Marechal (1953) [ l ] ;  

b) Holography, conceived by D. Gabor in 1948 [ 2 ]  and subsequently 
perfected by the researchers of the University of Michigan [3,4]. 
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In this paper we shall discuss the results of recent studies carried out 
under a DRME contract (Note: Contract 65-34-276 entitled "The Possibilities 
of Filtering of Spatial Frequencies") whose aim was to explore certain current 
possibilities of these methods. 

In Chapter I we shall recapitulate certain elementary concepts relating 
to diffraction, in a form adapted to the problems treated subsequently. 

Chapter 11 is devoted to the holograms. We know that the latter permit 
recording and then restitution on a photographic emulsion, with the aid of a 
coherent background, both the phase and the amplitude of a coherent light wave. 

The results which we have obtained relate to the three-dimensional 
holograms (images in relief), to the duplication of holograms, to interferometry 
in diffuse light, to the formation of images by holography, and to Fourier- 
trans form holography. 

In Chapters I11 and IV we shall first recall the principles of the filtering 
of spatial frequencies, and will show that this method, based on diffraction in 
the optical instruments - a method which has yielded spectacular results in the 
improvement of optical images [ 5-71 - is in fact a method of data processing. 

In effect, the coherent optical filtering implies a convolution relationship 
between two functions. 

Convolution is a linear functional which comprises some important, 
special cases, notably the correlation, integration, differentiation, and scalar 
product of two functions. 

It can be seen that by means of this mathematical apparatus it is possible 
to carry out data processing. It is this aspect of the problem which we have 
specially developed herein. 

The fact that, on the one hand, this treatment is carried out in two 
dimensions (x,y) and that, on the other hand, it requires only a static filtering 
by a material screen whose transparency is suitably modulated, endows this 
method with great simplicity. Thus the optical correlation of two radar charts 
is as easy as that of two rectangular gating pulses. 

In this way coherent optics makes its entry into an area which up to now 
has been reserved for electronic computers. 

In Chapter IV the optical filtering is applied to pattern recognition. 
This term actually comprises some highly diverse processes, all of which, . 
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however , are treated by an analogous formalism. A satellite detection system, 
for example, gives a signal from which a number of data are expected such as 
presence, position or velocity; this is a form of pattern recognition. 

Among the results presented herein, we have stressed the automatic 
recognition of characters in a printed text. In effect, despite its apparent 
simplicity, this problem is beset with a number of traps whose solution makes 
it possible to approach other problems, such as the treatment of electric signals 
after spatial transposition, with a greater hope of success. 

The study presented herein makes no claims for being exhaustive; the 
subject is in the process of development, as is shown by the bibliographical 
references given at the end of this article. 

1. GENERAL DISCUSSION OF DIFFRACTION 

1. Introduction 

Coherent Optics is based on the phenomena of diffraction. Below we 
shall discuss some of the elements of the theory of diffraction used in this study, 
particularly the form of the correspondence between two planes, one of them 
comprising an illuminated aperture which diffracts the light, and the other being 
the observation plane. 

In the mathematical expressions for this correspondence there appear 
certain pure phase factors which are frequently neglected, because they dis- 
appear during recording done by means of detectors such as the photographic 
plate. 

In holography and in the filtering of spatial frequencies these terms 
play an important role: it is for this reason that an effort is made to show 
them in the formulas which will be developed in the case of 

a) F'raunhofer's diffraction, relating to observation in the vicinity of 

Fresnel's diffraction, relating to all other cases. 

a focus, or  at infinity; 

b) 

These two cases are deduced from the analytical expression of Huygens' 
principle. 
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2. The Hu y gen s- F resnel Transformation Pri nci p I e 

This principle may be stated as follows: 

If the electromagnetic field (produced by a coherent source) is known 
on a closed surface S which does not contain any sources in its interior 
(Figure 1) , it is known at any point P in the interior of surface S. 

It is in this form that Huygens' 
principle will be used in the overall study 
of the holograms, 

The analytical expression of the 
phenomena is easy only when the surface 
is an absorbing plane II pierced by an 

aperture. Plane II is completed by the 
0 

0 

half-sphere of infinity whose contribution 
at P is zero. Figure 1. Huygens' Phnciple, If the 

electromagnetic field is known on a 
closed surface S not containing any 
sources such as E ,  i t  is known at any 
point P located within S. 

For an optical instrument the dif- 
fracting opening is the exit diaphragm. 

Let no be the diffracting plane 

(Figure 2 ) .  We shall now determine the 
complex amplitude of the electromagnetic field diffracted by II at point P 
situated in a plane 3 parallel to II 

0 

0' 

- Figure 2. Fresnel's Diffraction. I I o  
is  the diffracting plane; 5 i s  the obser- 
vation plane. 

COH E R EN1 

This result can be obtained by means of several expressions. We shall 
use Sommerfeld's formula [ 8 ] : 

4 



where h x , y is the complex amplitude at a point M having coordinates x , y 

in plane ll of origin 0; g(x ,  y, z) is the diffracted amplitude at point P(x,y,  z)  , 

0' 
r is the distance M P, 6 is the angle between M P and the normal, M N to ll 

and k = 2 d h ,  the wave number. 

( 0  0) 0 0 0  

0 

0 0 0 

Formula (I. 1) , valid in  the scalar approximation for a quasi- 
monochromatic wave of pulsation w ,  is simplified when the diffraction angles are 
small. We then have cos e = 1. If, moreover, the distance z = d between 
and ][I is large compared with A ,  we can neglect l/r2 compared with ik/r7 and 

take this last term outside the integral, because r -N z = d, whence, we have 
0 

ikr 
In factor e , we have 

Now, d is large compared with the other terms, and (I. 3) may be expanded 

r * d +-l(X 1 - $- ( Y  - Yo)21 
2d 

and expression (I. 2) becomes 

g(x,y,d)  = --!- eikd s sll h(Xo.yo) 
0 

hd 

x exp(@ - xo)2 + (Y - Yo~)dX0dYo * 

This expression will serve as the point of departure for establishing the 
properties of both Fresnel's and F'raunhofer's diffraction. 
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+ 
Vectorial Notation. Vector OM of components x , y  contained in 

will be denoted as M 
0) 0’ 

0 + 0 0) 

plane 11 

tained in plane 3 will be denoted as P. 

Likewise vector SP of components x ,y ,  con- 

We shall also write 

With these conventions, the term ( :’x - xo)2 + (y - yo)2 becomes the scalar 

square (P - M )2 and when expanded becomes P2 + M - 2PM0, the term 

PM being the scalar product of P and M . 
0 0 

0 0 

The analytical form (I. 5) of the Huygens-Fresnel principle is therefore 
written as 

3. Fresnel Ditfraction and Fresnel Transformation 

Expression (I. 6) gives the complex amplitude of the field diffracted 
by plane II at a point P situated at a finite distance from 11 - hence this is a 

0 0’ 

Fresnel phenomenon. 

When the observation is made in a plane 3 parallel to 11 the factor in 
0’ 

front of the integral is a constant which may be neglected; hence, by writing 
g ( P )  for g ( P , d ) ,  (1.6) becomes 

(1.7) 

which can be further written as 

(I* 8, g ( P )  = e ikp2’2d JII0 h(Mo)expE ( M i  - 2P.M 0 
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If phenomenon (I. 8) is recorded by photographic plate which is sensitive only 
to illumination lg (P) I 2,  the quadratic factor exp (ikP2/2d) disappears and may 
be neglected in the formulas. By contrast, in holography this factor is recorded, 
and hence the complete expression (I. 7) must be preserved. 

Relation (I. 7) is a convolution product symbolically denoted as 

ikP2/2d 
g ( P )  = h(P) Y e  

This expression is a Fresnel transformation. It can be shown that the 
latter is reciprocal, i. e. , if we have (I. 9) we also have 

(I. 10) 
1 

The two relations (I. 9) and (I. 10) express, for the Fresnel diffraction, 
the correspondence between a diffracting plane IT and an observation plane 5; 
the roles of the two planes may be reversed. 0 

Special Case. The diffracting plane IT is reduced to a luminous point M, 
0 

and then h(Mo) is represented by the Dirac distribution 6 

distribution of the complex luminous amplitudes on 5 becomes 

(I. 11) 

a result which is readily obtained also by a direct calculation. 

4. Fraunhofer’s Diffraction and Fourier Transformation 

Fraunhofer‘s diffraction takes place in the vicinity of the focus S 
(in the general sense) of an optical system ( Figure 3 ) ,  the latter being 
characterized by its exit diaphragm ll 

image of a point - and monochromatic source S . 
(real or virtual). Point S is the parqxial 

0 

0 

Let 5 be the plane parallel to IT with origin S and with position vector P. 
0’ 
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To study the amplitude g (P) 
diffracted on the plane 5 by pupil Il , 
we use form (1.6) of Huygens' 
principle which, as we have just seen, 
relates to the Fresnel diffraction at 
a finite distance. However, the 
intervention of the optical system 
modifies this expression. 

0 

Figure 3; Fraunhofer's Diffraction. 
The diffracting plane IIo i s  the exi t  
pupil of an optical instrument. The 
observation plane 5 i s  normal to the 
axis at S, which is the paraxial image 
of a monochromatic point source So. 

In effect it is necessary to 
introduce in (I. 6) the distribution of 
amplitudes h M on plane II ; the 

distribution is given by the amplitude 
which would be produced on Il by the 

perfect spherical wave Z which con- 
verges in S, in the absence of diffraction (since the diffraction intervenes only 
after passage through screen IT ) ; whence, if r is the radius of 22, 

( 0) 0 

0 

0 0 

(I. 12) 
-ikro 

h(MJ= e 

By means of a reasoning similar to that of Paragraph I. 2 we obtain, in 
vectorial not at ion, 

r = M S = a d +  
0 0 

(I. 13)  

Hence, after taking the independent term of Mo outside the integral and 

taking (I. 12) and (I. 13) into account, formula (I. 6) becomes, save for the con- 
stant factor -i/hd, 

( I .  14) 

In this calculation we have assumed that the transparency of pupil II is 
0 

uniform. If this transparency is not uniform but represented by the complex 
function f(Mo), (I. 12)  becomes 

(I .  15) 
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This situation occurs especially in the 
where a photographic plate of transparency t 

of spatial frequencies 
placed against TI 

0' 

Under these conditions we obtain, instead of (I. 14),  

(I. 16) ikp2'2d sn f(Mo)exp(- ik P. M 
d g ( P )  = e 

0 

which, save for the factor 

(I. 17) 

is the Fourier transform o f f  

ikP2/2d e 

To obtain (I. 16) we have started out from formulas relating to the 
Fresnel phenomena, but the introduction of the term (I. 12) ,  due to the sphericity 
of wave C, gives a Fourier's transform as a final result save for factor (I. 17). 

a. The Quadratic Phase Factor 

A s  the case of the Fresnel diffraction (Paragraph I. 3) the factor 
(I. 17) is frequently neglected - because it disappears during the recording of 
the phenomenon (I .  16) by means of a cell or a photographic emulsion. In 
coherent optics it is no longer permitted to ignore it; in effect: 

1) In Fourier-transform holography (I. 17) is recorded, and 
it changes the properties of the hologram, We shall return to this point in 
Chapter IV; 

compensate (I. 17) in order to obtain linear relations invariant by translation. 
2) In the filtering of spatial frequencies it is necessary to 

b. Reciprocity of the Fourier Transformation 

The presence of the quadratic phase factor (I. 17) (which 
a spherical wave) means that the Fourier transform of function 

formed on plane 5 but on a sphere of radius d, with its center in 0. 

Factor (I. 17) will often be compensated below (Chapter 111) ; the distri- 
bution (I. 16) of the amplitudes on plane S then becomes the Fourier integral 
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(I. 18) 

(I. 19) 

F(P) = f(Mo)exp(- 5 P.M$dMo . 
=0 

We know that this transformation is reciprocal and that we have 

c . Reduced Coordinates 

Let us write ( Figure 4) for coordinates x and y of point P of 
the Fourier plane 3. 

(I. 20) u = x/Ad, v = y/Ad; 

where u and v are the reduced coordinates of P which define the vector C2 (u,v) 
of the Fourier space. 

Hence relations (I .  18) and (I. 19) become, save for a constant factor, 

(I .  21) 

(I .  22) F(Q)exp 27ri0.Mo dC2 , 0 
which corresponds to  the usual notation of the Fourier transformation. 

d. Notations for the Fourier Transformation 

We shall generally use for a pair of Fourier transforms the 
same pair of letters, one of them being a lower case letter and the other one 
a capital letter. 

We shall also write, for the Fourier transformation (I. 21), 

(I. 23) f ( M o ) s  F(Q) 

(F. T. = Fourier transformation) 
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Figure 4. The Reduced Coordinates. 
If x and y are the coordinates in the 
Fourier plane, the reduced coordin- 
ates u t: x/Ad, v = y/Xd define the 
vector a (u ,v j  of the Fourier space, 

X =  u X d  

and for the inverse Fourier transformation 

(I. 24) 
F.T.-' f(Mo) . 

F(Q2) - 
Notes, 

-iw t a) The time factor chosen is e ; 

b) In line with the usage adopted in 
term %mplitude" for "complex amplitude. I' 

hence the phase lags are positive. 

optics we shall frequently use the 

5. Conclusion 

A large number of diffraction problems may be solved by the 
approximate formulas (I .  9) and (I. 16) relating to the Fresnel and Fraunhofer 
diffractions. 

When the diffraction angles are large, formula (I. 2) gives satisfactory 
results within the limits of the scalar approximation (study of the aberrations 
of the holograms). 

Finally it should be remembered - and this is often useful in certain 
reasonings (for example, Paragraph 11.7) - that Huygens' principle may be 
strictly expressed, with the aid of a Green function, by a convolution. 

I I .  HOLOGRAMS 

1. Introduction 

Holography has introduced considerable progress into coherent 
optics. While originally the purpose of the holograms was to reconstitute two- 
o r  three-dimensional images from a photographic recording made without 
lenses , their present field of application is much more widespread. 
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Hence the term "lens-less photography" gives a rather restrictive 
meaning to this method, and it is more accurate to use the expression 
"recording of a coherent optical wave in phase and in amplitude. 'I 

In effect it is here that the interest of holography resides. By means 
of a coherent background it is possible to record any diffraction phenomenon 
on a photosensitive material. This phenomenon may then be restituted at will 
by coherent illumination of the photographic emulsion. In particular, if the 
diffracted wave originates from a three-dimensional object, the image of this 
object in relief is reconstituted, but in the case of a randomly chosen wave its 
manipulation is the equivalent of that of a photographic plate. 

Another remarkable property of holograms is that it is possible to 
record, successively, several waves on the same emulsion. In that case the 
process taking place during the restitution is an addition not of the intensity but 
of amplitude and phase. 

The principle of holograms is now sufficiently well known to enable u s  to 
take up its study in the form of a general method which is frequently fruitful in 
research. 

We shall stress more specifically the new aspects obtained herein: 

a) Properties of holographic image production by a simple geometric 
method; 

b) Diffuse illumination interferometry; 

c) Duplication of holograms: 

d) 

e) 

Applications to the filtering of spatial frequencies (Chapter IV) ; 

Experimental results in three-dimensional holography. 

2. Physical Aspect of Holography 

The idea which led to holography [2-41 was based on the Huygens- 
Fresnel principle and on the properties of luminous interferences. 

Let us take at random a diffracting system which emits a coherent 
electromagnetic wave. This system is represented schematically in Figure 5 
by an object 0 illuminated by a laser g. 
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P . Figure 5. Huygens’ Principle. The 
radiation received by point P may be 
considered as originating either from 
object 0 illuminated by laser de, or 
from a random virtual plane H situated 
between 0 and P. 

Let u s  take, in  addition, a point P which receives the radiation emitted 
by 0, and a virtual plane H situated between 0 and P. The wave emitted by 
object 0 passes through plane H before arriving at P. Thus it can be said that 
the radiation received by P originates from the object, that it can likewise be 
said that it originates from the virtual plane H. 

Let us  now consider the following two situations: 

a) The object illuminates point P and gives a distribution of complex 

The object is absent, but a synthetic source has been reconstituted 

amplitudes A(x,y, t) on plane H(x,y);  

on H; the vibrational state of this source is A(x,y,t)  . b) 

According to the Huygens-Fresnel principle the effect at P is the same 
for both situations. 

A hologram is precisely a photographic recording which, when illuminated 
in a suitable manner, restitutes the wave A (x, y, t) . 

However, we know that i t  is not sufficient to place a photographic emul- 
sion in plane H in order to obtain such a recording. In effect the progressive 
monochromatic wave emitted by 0 will give, on plane H, the field distribution 

but the blackening produced on the plate will be a function only of the received 
energy, proportional to the mean, in time, of the square of (11.1) , i. e. , to 

and the phase information will be lost. 
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To preserve both the phase and the amplitude information (11.1) is 
transformed into a stationary wave by the addition of a coherent background, 
In this way we obtain a network of interference fringes whose recording con- 
stitutes the hologram. The local variation of the contrast of the fringes and of 
the fringe interval in the interferogram then reflects the local variation of the 
amplitude and the phase of the wave (11.1) . 

Experimental Arrangement. The coherent background is added simply 
by means of the assembly whose schematic outline is shown in Figure 6. 

Figure 6. Recording of a Holo- 
gram: Principle of the Assembly. 
A laser beam ;Cis separated into 
two waves (1) and (2), by the 
separating L. Wave (1) illumin- 
ates object 0. The reference wave 
(2) directly illuminates the photo- 
graphic emulsion H; i t  constitutes 
the coherent background which 
interferes with wave (3) diffracted 
by the object. The plate records 
the total illumination due to waves 
(2) and (3). 

The coherent background is also 
called carrier or reference wave. 

Let us  examine this process in 
greater detail, as well as the manner in 
which hologram H restitutes the recorded 
wave. 

3. Principle of the Holograms 

The experimental arrange- 
ment of Figure 6 is reproduced in a 
schematic manner in Figure 7. The 
same laser - not represented- 
illuminates the object and gives the 
reference wave. The object may be 
illuminated in any manner: for example 
one may interpose a polished glass 
between the laser and the object. 

The reference wave is generally 
a parallel, divergent o r  convergent, 
wave; hence it may be represented by a 
point source S 

P’ 

a. Recording of the 
Holograms 

We use  the subscript 
o for the object and p for the carrier.  
The coordinates on H are  x and y. 
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H. 
Figure 7. Recording of the Hologram 
(Shown Schematically). A laser 
illuminates the object in any given 
manner (if necessary through a polished 
glass). A part of the laser beam serves 
for forming the point reference source 
S , The hologram i s  recorded on H. 

P 

- iwt  
- The object diffracts on H - neglecting the time factor e - the com- 

plex amplitude 

Ao(X,Y)  = ao(x,Y)exP icp0(X,Y) 
(11.3) c 1  
This distribution is unknown a priori, but is perfectly well defined because the 
illumination is coherent. 

The carr ier  gives, on H, the complex amplitude 
1 

(11.4) 

Plate H records 

(11.5) I =  

the total illumination due to (11.3) and (11.4) , or 

2 + A A* + A26A 

IAo + Ap12 = p p l ’  + IAoJ 0 p O P  

The amplitude transparency t of the plate on which the image is produced is 
proportional, if y is the slope of the characteristic curve of the emulsion, to 
(Appendix 2) 

(11.6) 

To free ourselves from the influence of the properties of the emulsion and to 
make the recording linear we bring about the following relationship (which can 
be easily done experimentally) 

(11.7) 

Then we can undertake an expansion of (11.6) ; we obtain, keeping (II. 5) 
in mind, 
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The reference wave is generally plane o r  spherical; hence, with the approxima- 
tions usually made in diffraction, it produces an illumination 1 Ap 1 which is 
constant on H and which will be standardized as 1: 

(11.9) = ap2 = 1 . 

Condition (11.7) makes it possible to neglect the term ( y / 2 )  A /A '. 
Hence (11.8) may be written, except for the constant 1 A I-' which represents 
a uniform absorption of the holograms p 

l o  PI 

(11.10) 

In this way we obtain an expression which does indeed contain the ampli- 
tude and the phase of the diffracted wave, because (11.10) can also be written as 

In this form the interferential aspect can be readily seen. It may be noted that 
(11.10) is real and positive, and the complex recorded wave (11.3) appears 
only by diffraction during the restitution. 

b. Reconstruction 

Hologram (11.10) is illuminated by a reconstruction wave A r 
which is identical to the reference wave (11.4) which was used during the record- 
ing; this is not indispensable, as we shall see later, but the demonstration of 
this process is simplified. Thus on the minus face of the hologram (Figure '8) 
the amplitude is 

(11.11) A = A  . 
r P 

On the plus face of H the transmitted amplitude is A = tA , or  
i r 

(11.12) 
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Figure 8. Reconstruction of the 
H o log ram. The reconstruct i on 
source Sr i l luminates the hologram 
H.' The latter transmits three waves: 
1) the sl ightly altered reconstructed 
wave (cross-hatched); 2) two waves 
originating from two reconstructed 
images 01 and 02 . The two images 

may be real orvirtual, or partly virtual 
and partly real, depending on the 
position of Sr at  reconstruction. If Sr 
i s  identical with the reference source 
Sp (Figure 7), one of the images i s  

identical to the recorded object and 
i s  situated in the same region; 

This is the general expression of the amplitude transmitted by the hologram. 
Keeping in mind (11.9) and (11.11) , it becomes 

(11.13) 

Thus the hologram reconstructs three waves. 

1) The first term A of (11.13) corresponds to the directly transmitted r 
reconstructed wave. In reality this wave is slightly perturbed by the term 
- ( y / 2 )  A /A which was neglected whe.n going from (11.8) to (11.10). I O PI 

2) The second term represents, save for the factor y / 2 ,  the ampli- 
tude A diffracted by object 0 on H during the recording; hence this wave is 

0 
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wholly reconstituted in phase and in amplitude. An observer situated to the 
right of H will, in particular, see a three-dimensional image O1 having all the 
characteristics of object 0: relief, parallax and depth of field (Figures 17 
through 26). If object 0 is a wave surface given by any given coherent system, 
this wave surface will have been reconstituted. 

3) The third term, - ( y / 2 )  A 2A;, represents a second reconstituted 
r 

image O2 which will be called conjugated image, as distinct from image O1 which 
is called direct image. The properties of the conjugate image will be completely 
defined in the study of a point object and source presented in Paragraph 11.5. 
Let us note, for the time being, that this image may be virtual, real or partly 
virtual and partly real, depending on the operating conditions. 

4. Nates on the Holograms 

Several conclusions may be drawn from the reasonings jus t  made. 

a) The y of the emulsion (expression 11.13) intervenes only in 
the form of a constant factor in the amplitude of the waves diffracted by the 
hologram, The sign of y ,  which is + for a negative emulsion and - for an 
inversible emulsion, fixes the phase of the diffracted waves to within T.  Hence 
a copy of a hologram, which reverses the sign of y ,  has the same properties as 
the original hologram. This fact, in particular, makes it possible to use the 
method of hologram reproduction proposed in Paragraph 11.8. 

point correspondence, a hologram results from the point- (whole) object 
plane correspondence of the hologram. Hence it has been proposed that any 
given portion of the hologram is sufficient to reconstruct the whole object. 
While this is t rue for diffusing objects which are then rendered with a decreased 
resolution and at a given angle, this is no longer t rue for nondiffusing objects. 
In particular, in Fourier holography (Filtering of the Spatial Frequencies, 
Chapter IV) a given portion of the hologram permits the reconstruction of only 
some spatial frequencies of the object. For a periodic object it is even possible 
that nothing is reconstructed from the whole. 

b) Contrary to general photography which consists of a point-by- 

In interferential holography a portion of the hologram permits the obtain- 
ment of only a portion of the interferogram of the same order of magnitude. 
This has led us  to develop an interferential method in diffuse light. 

c)  The angular separation between the three transmitted beams 
is due to the use of an "inclined" carrier. In first approximation this means 
simply that the cone, defined by thecarrier resting on thecontour of the hologram, 
need not contain the object. Thus a separation can take place even when the carrier 
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is not inclined but is normal to the plate. The geometric study contained in 
Paragraph 11.5 makes it possible to treat these field problems in an easy 
manner, 

5. Geometric Study of the Holograms 

Now that we are familiar with the principle of holography, we can 
make a purely geometric study of the formation of the images by the holograms. 
The latter , in effect, have numerous analogies with lenses. 

The formulas proposed below seem to be easier to use than those given 
elsewhere in the literature [9, l o ] .  In effect the axes of the different beams 
involved in the holographic technique are different ones; thus one has the 
advantage of using polar coordinates which simplify the results and their 
interpretation. 

We shall conduct our reasoning, as  in classical geometric optics, on a 
point object M which in this case gives two images MI and M,. The reference 

wave (carr ier)  is emitted from a point source S and the restitution wave from 

a point S . Points M , S , and S have arbitrary positions; they may be real 
r O P  r 

o r  virtual, at a finite distance o r  at infinity. 

0 

P 

We shall examine successivgly the formation of the images in the 
meridian plane and outside the meridian plane. 

a. Formulas in the Meridian Plane 

(1) Notations (Figure 9) . Points M , S , and S are defined by their O P  r 
"polar" coordinates ( p ,  e )  
given point C of hologram H. The latter is situated in plane z = 0. 

The radius vectors p have their origin in any 
0, P, r' 

(2)  Sign Conventions. The p's are negative for z < 0 and 
positive for z > 0. The 0's are marked off as on the figure, in space z > 0. 
They are positive in the counterclockwise direction. The origin of the angles is 
axis Cz. le I is always <7~/2. 

( 3 )  Establishment of the Conjugation Formulas. On recording, 
points M and S diffract amplitudes A and A on H. On restitution the source 

S diffracts amplitude A on H. 
0 P 0 P 

r r 
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Figure 9 .  Geometric Study of Holograms; Notations, 
The object Mo , the reference source S P and the 

restitution source Sr may be real ( p  > O), virtual 
( P > 0) at a finite distance or at infinity. Arrow f 
indicates the positive direction for 0 ,  

It is sufficient to substitute these values into the general expression of 
the two restituted waves (expression 11.12) : 

(11.14) direct wave Ai = A A“:A 
O P  

conjugate wave A2 = A“ A A 
o p r  

in order to obtain the properties of the two images. 

, and A by doing our reasoning for the point 

object M (Figure 10) .  Let C be the origin of the phases. Point M radiates 
0 0 

to point P, of ordinate y, on H, the amplitude 

0’ Ap r Let u s  determine A 

(11.15) A 0 = e x p ~ ( r o  - p o l  . 
In triangle M C P  we have the following relation, keeping in mind the 

0 

+ y2 - 2p y sin B 
0 0 0 ’  

>> lyl , and when 8 is small, whence if lpol 0 
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Figure 10. 

(11.18) 

and the restitution wave 

(11.19) 

(11.16) 1" 0 - Po =(  Y2/2Po)- YOo 

and (11.15) becomes 

0 
(11.17) 

Likewise the carrier gives on H 

A r = - y e r ~  . 

In these expressions coefficient l /p of y2/2 is the curvature of the wave and 8 
is the angular coordinate of the center of curvature. 

Substituting expressions (II. 17) to (11.19) into (11.14) , the two restituted 
waves may be written as follows: 

Direct wave: 

(TI. 20) 

Conjugate wave: 

(11.21) A2 = e ~ p ~ [ ~ ~ ~  + pp 1 + -!-) - y(-eo + ep + or)]} . 

These waves converge to (or diverge from) their centers of curvature MI and Mz 
which therefore are the restituted images. Coordinates p and 8 of points Mi  
and M, are given by 

(11.22) 
1 1 1  + -+ - ,  - 1 - _  -- 1 1 1 1  

+ - ,  P2 '0 'p 'r PI Po Pp Pr 
- -  - -  - -  
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(11.23) , g i = e o - e  + e ,  e 2 = - e  + e  + e .  -- P r  o p r  

conjugate image M2. direct image Mi 

These expressions are conjugation formulas analogous to those of 
lenses. They make it possible to determine the position of the direct image 
Mi and that of the conjugate image M2 defined by coordinates pi, 81 and p2, 02, 
as a function of the coordinates of the object M , of carrier S 
restitution source S . r 

and of the 
0 P’ 

If pi is positive, MI is real; if pi is negative, MI is virtual and the 
same applies to M2. All  combinations are possible for the two images, as we 
have already indicated above. 

Furthermore we obtain formulas for the [angular ] enlargement and 
[transverse] magnification of images MI and M2. 

(4) Angular Enlargement. To define this enlargement we 
must specify the position of the eye. We shall assume - and this is logical - 
that the eye is situated in the plane of the hologram. By differentiating (11.23) 
we obtain 

(11.24) gl = dsl/deo = +I , g2 = d8ddOo = -1 

(5) Transverse Magnification. It is given by 

Pi,2 = d(Pe ) l , dd  P o d o  0 
with p constant, o r ,  keeping (11.24) in mind, 

(11.25) PI = PI/Po 9 P2 = -PdPo 

(6) Axial Magnification. 

(11.26) 
2 

dp2 

- (0;) 

Q i  =dpo 4 0 1  = (--J PI , CY2 =.- - - - 
2 

a0 
From (11.26) it is inferred that, for a three-dimensional object, the direct 
image possesses a normal relief and the conjugate image an inverse relief. 
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( 7 )  Change of Wavelength. If the recording of the hologram is 
carried out with wavelength A and the restitution with wavelength A' , it is suf- 
ficient to substitute k1 = 27r/A'instead of k = 2n/A into (11.19) in order to obtain 
the conjugation formulas: 

The enlargeGents and magnifications are simply multiplied by A'/A. 

b. Extra-Meridian Conjugation Formulas 

Points Mo, S , and S are now defined by coordinates p ,  0 ,  and CP 
r P (Figure 11). 

By means of a reasoning similar 
to that used in Paragraph 11.5. a we 
obtain conjugation formulas which are 
still the same as (11.22) and (11.23) for 
p and 8. To these are added the for- 
mulas containing q: 

PI = c P , - c P p + V r '  

c p 2 = - " p 0 +  c p p + c p r 9  

(11.28) 

Figure 11. Configuration for the 
Extra-Meridian Coniugation Formulas. For the magnifications nothing 

has changed; as for the enlargements, 
they must be completed by the formulas 
containing cp : 

(11.29) 
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Invariance of the Formulas. The position of origin C on the hologram 
has been chosen at random for establishing the conjugation formulas; hence 
the latter are invariant when C is displaced. 

Likewise the origin axis of the e's may be chosen at random. In par- 
ticular, if instead of the z-axis we take the axis S C of the restitution wave 

for origin (Figure 9) , formulas (II. 23) become even more simple: 
r 

(11.30) el = eo - e P' e2 = -to - ep). 

c. The Aberration of Holog.rams 

For the establishmeat of the conjugation formulas we have 
neglected, in expression (11.16), all the terms of an order higher than 2. 
This is comparable to the Gaussian approximation in classical optics. The 
higher-order terms represent the aberrations studied by various authors 
[ 9,11 J In this way one obtains the usual aberrations, spherical aberration 
coma, distortion, astigmatism and "chromatic aberration'' in the case of 
a change of wavelength on reconstruction. 

We note that it is possible to obtain the conditions of rigorous stigma- 
tism for the two images without long mathematical expansions. 
we start from the rigorous expressions of the amplitude of the reconstructed 
waves which are, according to (II.14), 

To this end 

(11.31) 

(11.32) 

A A" A 
O P  r 

A*A A 
0 P r  

- 

eXPE(-V 0 
+ 

VP + 

VP -t 

(1) Direct Nonaberration Image. Let us take a point object 
M and its direct image Mi (Figure 12). Stigmatism prevails i f ,  regardless 

of the position of point P on the hologram, the optical path M PMi is con- 
0 

stant, or ,  according to (11.31), (. ) 
(11.33) 

where 9 = constant, which entails, save for a constant factor, 
r' 'p 

(11.34) 
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(11.35) 

I? 

Figure 12. Rigorous 
Stigmatism. M, i s  the 

object; M1 the image. 

The condition of rigorous 
stigmatism is, according 
to Fermat’s principle: 

MOPMI  = constant. 

A l = A .  
0 

Hence rigorous stigmatism prevails if the recon- 
structed wave is identical to the reference wave; 
the latter can be a deformed wave taken at random. 
Then the image is identical to the object and is 
situated in the same region. 

In the special case of a spherical reference 
the condi- wave originating from a point source S 

tion of stigmatism is that the point reconstruction 
source S must be identical with S . 

r P 

P’ 

( 2 )  Conjugate Nonaberration Image. In 
the same manner we find that, if 

(11.36) 
:k 

A = A ,  
r P 

the conjugate image is stigmatic. Moreover, (11.32) 
is then written as 

(11.37) 
.L 

A2 = A*‘*. 
0 

These formulas signify (Figure 13) that the nonaberration conjugate image 
02, the corresponding reconstructed source S 

relating to the direct image are symmetrical with respect to H. 

and the same elements r 2  

Thus if S is real, Sr2 is virtual, and vice versa, and the same 
r l  

applies to the images. 

d. Conclusions Regarding the Production of Holographic Images 

The conjugation formulas immediately give a number of general 

(1) Angular Dimensions of the Images. According to (11.24), 

ru les ,  the most important of which are  cited below: 

regardless of the operating conditions, the two images are seen .from a point 
C of the plane of the hologram at an angle that is always constant, which is 
that at which the object is seen from the same point. 

(2) Position of the Images in Space. According to (11.30) , i f  
we take axis CS of the reconstructed wave as the origin of the angles, the r 
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H 

directions of the two images MI and M2 become 

(II. 38) 8 1 = 8  - 8  82 = -81. 
0 P' 

Consequently these two directions are symmetrical relative to the 
reconstructed axis (Figure 14) and are invariably linked to the latter by angle 
8 - 8 between the carr ier  and the object, defined during the recording. 

O P  
Hence, 

a) If the reconstruction source turns by an angle Q! , the two images 
turn by the same angle; 

b) If the hologram turns by an angle a! , the images remain fixed in 
space. 

(3) Plane Reference and Reconstructed Waves. In (11.22) we 
wri tep - - p, = 0 0 ,  whence 

(11.39) 

26 

P I  = -P2 - - Po 

Figure 13.. (a) Conjugate waves. Two conjugate luminous distributions 
A and A*, on H, correspond to  two waves z and 2 * which are symmetrical 
to  H because to go from C to C * one simply changes the sign of the path 
difference A .  
reconstruction source S r l  must be identical with reference source S 
then image M 1 coincides with object Mo. (2) Conjugate image M 2 : 
restitution source Sr2 i s  symmetrical to 5 
jugate image i s  then symmetrical to the object. 

(b) The nonaberrant positions. (1) Direct image M1 : the 

P; 

with respect to H. The con- 
P 



The two images are linked in an invariable man- 
ner to the restitution axis S C by the angle 

between carr ier  and object, 8 - e defined at 

the time of the recording. 

waves are plane, the direct image Oi is identical 
to the object, and the conjugate image is deduced 
from O1 by symmetry relative to a plane whose 
trace is the CN normal to S C. 

r 

0 P' 

If the reference wave and the reconstructed 

/ 
I 

Figure 14. Position of the 
Images in Space. 

r 

Hence, according to (11.38) , the two images are symmetrical with 
respect to a plane whose trace on Figure 14 is the normal CN to the recon- 
structed axis. 

(4) Limitations of the Formulas (Bragg's Effect). One of 
the limitations of the use of the conjugation formulas is due to the aberrations. 
Another limitation is of a physical nature. In effect the emulsion is not 
infinitely thin as has been assumed until now. Its thickness is finite, of the 
order of 15 1-1 in the case of the Kodak 649F plates. 

Thus the plate records the state of interferences not on a plane but in 
the volume occupied by the gelatin. We then obtain silver layers which con- 
stitute a three-dimensional network 

During the reconstruction this network presents an effect which is 
more directional when the fringes are closer to one another'and more inclined 
in the emulsion. 

Hence if during the recording 8 - 8 and /2 are small, the 
O P  

events taking place conform to the formulas, but when these angles are large, 
the diffracted amplitude rapidly decreases when e deviates from 0 and the 

image disappears. 
r P 

Example. For the hologram of Figure 19, we had 8 - 8 35"; if 

the reconstructed wave 6 deviates by *lo" from angle 0 of the carrier,  the 
r P 

diffracted intensity drops to 10 percent of the maximum value obtained for 

O P  

e = e  
P I' 
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Figure 15. Assembly for the Recording of Holograms, wi th Two I l luminating 
Beams. The beam originating from a I a s e r S i s  divided into three parts by 
plates L 1 and L2- Two of the beams serve for illuminating the object 0, and 

the third (cross-hatched) constitutes the reference wave. A l l  the beams are 
di lated by the lenses of microscope M i n  such a way as to cover plate H and 
the obiect. The reference source is  then the focus Sp of objective M, . 

Furthermore, for 0 8 , the conjugate image is extremely weak; 
r P  

to observe it, it is necessary to give 0 a value close to 0 r 0' 

6. Experimental Study of the Holograms 

This paragraph deals with three-dimensional holograms. Inter- 
ferential holography is studied in Paragraph 11.7. The two-dimensional 
Fourier holograms will be examined in Chapter IV. 
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a. The Assemblies 

(1) Recording. The assemblies using parallel light exhibit a 
disadvantage of a practical nature: the beams are produced by collimators 
which are bulky and, in addition, the two-dimensional waves cannot be filtered 
from their heterogeneities. Hence we have used the assembly using divergent 
light, as shown in Figure 15. 

Similar assemblies have been used with one, 
two, or  three illuminating beams. 

(2)  Reconstruction. The recon- 
struction takes place visually or photograph- 
ically as in Figure 16; point S is in a posi- 

tion close to that of point S of Figure 15, 

in order to prevent aberrations. 
shows the whole restitution assembly: the 
image which appears in the hologram is that 
of the radar,  shown also in Figures 21 
through 23. 

r 

P 
Figure 17 

Figure 16. Reconstruction 
Assembly. The hologram is- 
illuminated by a monochro- 
matic point source Sr pro- 

duced by laser C. 

Figure 17. The Reconstruction Assembly. The image which appears in the 
hologram is that of the radar shown also in Figures 21 through 23. 
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pth. The camera i s  focused on the foreground 
he church in the background i s  blurred the reconstructed im 

igure 19).  

he camera i s  focused on the stained- 
adow of the statue; only this part of the church i s  
ue in the foreground is completely blurred 



Figure  20. E f f e c t  of Field Depth. The l e n s  of t h e  camera is stopped down 
to a diameter which is smal ler  than that of t h e  e y e ;  the  w h o l e  s c e n e  is in 
sharp f o c u s ,  but w e  note ,  in an a c c e n t u a t e d  manner, t h e  granulation which 
i s  c h a r a c t e r i s t i c  of di f fus ing  o b j e c t s  i l luminated by a laser and observed 
v i s u a l l y .  

For the reconstruction of Figures 18 and 19, the diaphragm of the lens 
was more open (30 mm) , the granulation disappeared, and so did the depth of 
field. 

b. Results 

Figures 18 through 26 show the reconstructions, obtained from 
holograms, of a number of three-dimensional objects. Note, in particular, &the 
parallax effect and the effects of the depth of field. 

c. Experimental Conditions 

The principal factors which influence the quality of holograms 
are the resolving power of the plates, the coherence length of the laser, the 
ratio between the amplitudes of the diffracted light and the carr ier ,  and the 
mechanical stability of the recording arrangement. 
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(1) Resolving Power of the Plates. The photographic plate 
must record the microfringes of interferences which are formed in its plane 
(Figure 27) .  

Figure 21. Effect  of the Depth of Field. Focusing on the 'horn' of the 
radar, on reconstruction (Figure 22). 

Figure 22. Depth of F ie ld  Effect. Focusing on the parabola of the radar 
(Figure 23). 
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Figure 23. Depth of F ie ld  Effect. Focusing on the shadow of the radar 
antenna. 

An exact study of the conditions under which the fringes are recorded 
requires the knowledge of the modulation transfer curve of the emulsion. This 
is generally not too well known. However, it is possible to do an approximate 
reasoning by means of which the orders of magnitudes are fixed. 

Let u s  consider two plane waves 2 and 22 
0 P 

originating from the object 

and from the reference wave, respectively (Figure 2 8 ) .  Let us assume that 
2 

then formed of parallel fringes whose interfringe 

(11.40) Ay = h/2 s i n @  

must be resolved by the emulsion. 

and 2 
0 P 

are inclined to hologram H by angles +a and -a . The hologram is 

Example. a = 3 0 ° ,  which is a common case; A y  = A. The resolving 
power of the plates should be close to the wavelength of the light. In practice 
for h = 6328 A (helium-neon laser) Kodak 649F plates are used, which 
resolve more than 2000 lines per mm. 

( 2 )  The Coherence Length of the Laser. This limits the depth 
of the objects which may be recorded. In effect, let A and B be the extreme 
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.points of the object ( Figure 29), assumed to be illuminate 
direction of the arrow. 

Then the path difference, relative to the carrier,  c 
better than to within f D. Hence it is necessary that the 
the laser be greater than 2D. 

The so-called llmonomodalll lasers actually possess several axial modes. 
The 3-mW helium-neon laser, which has served for the prepa 
holograms of Figures 17 through 26, had a cavity length of 1 = 
corresponds to an intermode distance Av = c/21= 200 MHz. In actual practice 
we have observed, as a result of beats, 3 modes, whence 2D = c/3Av = 50 cm. 

For long exposures, however, it is prudent to take into consideration 
the whole width of the Doppler ray, o r  1000 MHz. 

Note that in Fourier holography, the path differences are small and no 
special precaution must be taken when using the laser. 

(3) Amplitude of the Reference Wave. The photographic 
emulsions are generally not linear, which means, in the case of holography, 
that if the hologram receives (Paragraph 11.3) an. illumination 

(11. 41) 

its transmission factor in amplitude is not proportional to (11.41) but to 

(11. 42) 

(11.43) 

-Y/ 2 t = I  . 
This expression may be expanded if 

it becomes, when only the first terms are retained, 

( 11.44) 

Physically this is the equivalent of choosing, on the blackening curve, an 
operating point determined by A 
a short length. 

, and of modulating the curve by I A 0120ver I PI2 
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Figure 24. Parallax Effect. Th is  figure i s  the reconstruction of a set of 
dice and dominoes placed on a mirror. The images of the objects i n  the 
mirror are also reconstructed and can be differentiated from the object by 
their sp l i t  appearance. I n  effect the mirror employed i s  silvered on i t s  
back, and furnishes two images. Focusing on the foreground (Figure 25). 

arallax Effect. 
faces of the dice on the le f t  ar 
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igure 26. Parallax Effect, The camera was displaced to the right, the 
faces hidden in Figure 25 appear; the blurred dominoes in the background 
are also displaced. 

igure 27" Photomicrogram of a Hologram. e interval between the 
interference fringes is of the order of 1~ for this hologram, 
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Figure 28. Two plane 
wavesZo and Z inclined 
to plane H of the hologram 
by angles @and - 0 1 ,  produce 
on H interference fringes 
spaced Ay  = V2 sin (Y apart. 

P 

Figure 29. Influence of the Coherence Length 
of the Laser. If object 0, illuminated by a 
laser in the direction shown by the arrow, i s  
recorded by holography in plane H, the coher- 
ence length of the laser must be greater than 
20. 

If condition (11.43) is not satisfied, 
terms of a higher order of the type 

... 
P 

appear, which have two principal effects: 

a )  They yield images of a higher order, like the ordinary networks. 
However, in view of the Bragg effect, these images disappear when the angle 
between the carrier and the diffracted light is large. 

b )  They change the distribution of the amplitudes in the two waves 
of the first order: the direct wave and the conjugate wave. This latter effect 
is not very pronounced in the three-dimensional holograms where the observa- 
tion is often visual. Nevertheless in spatial filtering where the hologram is 
made to fulfill a mathematical function (Chapter IV) , the result can be damaging. 
It is necessary in this case to respect condition (11.43). 

(4)  Mechanical Stability of the Holographic Arrangement. The 
recording of a hologram consists, in fact, in  arranging a photographic plate in 
the plane of an interferogram, in order to fix the latter. It is then necessary, 
especially if the exposure times a re  long, to take certain precautions in order 
to ensure the mechanical stability of the assembly. 

Let u s  use the example mentioned in Paragraph 11.6. c: the interfringe 
interval in the hologram was less than 1 p: hence the production of a translation 
of the fringes of the order of 1 p ,  produced by the displacement of a single ele- 
ment of the recording device, is sufficient to mske the hologram blurred. To be' 
sure, to obtain a high hologram quality it is necessary that the displacement or 
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the deformation of the fringes under the influence of mechanical vibrations or  
thermal effects be very much less than lp ,  still referring to the above mentioned 
example. 

The installation of an antivibration support made of concrete, shown in 
Figure 42, has made it possible to avoid these effects. 

7. Interferometric Holography in Diffuse Light 

a. The Method 

The proposed method [ 12 ] makes it possible to prepare, by 
holography, an interferometer of the Mach-Zehnder type of a phase object, 
the latter being recorded through a diffusing screen. 

To this end the following two operations are carried out in either order: 

1) By means of the assembly of Figure 30 the hologram H of 
a polished glass D illuminated by a point source M is registered. The carr ier  
is emitted from point S 

P' 

2) Without changing the assembly, the phase object 0 to be 
studied (Figure 31) is introduced in front of the polished object, and the image 
of the hologram of object 0 seen through the polished glass is prepared on the 
same emulsion. 

On reconstruction, the hologram on which two images have been pre- 
pared reconstitutes an interferogram, an eximple of which is given by Figure 32 
relative to a sheet of glass which exhibits "grains" and shows variations of thick- 
ness and of refractive index. 

It may appear surprising that this could be done through a diffusion 
screen; however, the explanation of the phenomena is simple. 

surface D the amplitude 
(1) Recording. In the first phase, point M gives on polished 

(11.46) a; 

The polished object transmits ( L  is a linear operator) 

(11.47) L ( a )  

In effect the polished object does not destroy the coherence of the light, since 
its thickness is small compared with the coherence length of the laser. More- 
over Maxwell's equations are linear and the diffuser is passive, hence the action 
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Figure 30. Interferential Holo- 
graphy i n  Diffuse Light. F i r s t  
operation: The hologram of the 
polished glass D illuminated by 
the point source M i s  recorded 
on H. So i s  the reference source. 

Figure 31. Second operation: Without 
changing the assembly of Figure 30, the 
phase object 0 to be investigated i s  
introduced between source M and the 
polished glass D, and the image of the 
hologram of 0 i s  prepared on the same 
emulsion. Thus the hologram of 0 i s  
recorded through the polished glass 
(Figure 32). 

of the diffuser on the distribution (11.46) is reflected by an unknown operator, 
because it depends on the nature of the diffuser; however, it is linear. Whence 
(11.47) . 

Distribution (11.47) gives, on the plane H of the emulsion (expression 
1.9) the amplitude 

(11. 48) AI = L(a) Ir d, 

where Ir signifies convolution and d is the normal derivative of Green's function 
relating to the diffraction (Fresnel's function in first approximation). 

The carr ier  wave gives, on H, the amplitude 

(11.49) A 
P' 

The hologram records the illumination 

(11.50) El = \AI + Ap l2 
In the second phase, the object 0 introduces the phase difference q, and 

(11.46) becomes 

(11. 51) icp a e  . 
39 



Figure 32. Interferential Holography in Diffuse Lighj. The hologram recorded 
according to Figures 30 and 31 reconstitutes an interferogram of the phase 
object 0 which has been recorded. In this case the object is a glass plate 
whose 'grains' and whose variations of refractive index and thickness are 
visible. The hologram obtained in this manner shows al l  the properties of the 
ordinary holograms in diffuse light, in particular, the interferogram i s  directly 
visible to the naked eye. 

Hence (11.48) becomes 

(11. 52) A,=  L(a e is0 ) + d 

and the illumination (11.50) becomes 

(11. 53) E, = /A2 + Ap 1' . 

The total illumination, due to the two operations, is 

+ IAP IZ (11.54) El + E2 = IAl I' + 1' 

+ ( A ~  + A,) A* + (A: + A:) 
P 
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( 2 )  Reconstruction. Under the normal conditions of recording, 
the transparency t of the hologram (11.54) i s ,  according to expression (11.10) 
in whichy has been standardized at -2 

(11.55) 

If (11.55) is illuminated by the reconstructed wave A = A , the second term, 
r P  

which reconstitutes the direct image, becomes 

(11. 

or,  

(11. 

(11. 

56) A, + 

keeping in mind (11.48) and ( 11.52) , 

57) [ L(a)  + .(a 

since operator L is linear, 
- 

A2 

eiq)] + d 

\--.1 

~ a ( 1  + eiq) I Sr d . 
- 

This expression means that the reconstructed wave originates from the 
fictitious object 

(11.59) 

which represents, physically, the projection, on the polished object, of the 

interferogram a of the dephasing object. 

b. Properties of Interferometric Holograms in Diffuse Light 

These are analogous to those of the usual holograms of diffusing 
objects. The grains or grooves of the emulsion a r e  practically without effect 
on the quality of the interferogram. Moreover, to reconstruct the latter in  its 
entirety it is sufficient to use any given part of the hologram, In actual practice 
1 cm2 gives very convenient results. Finally the image may be observed by the 
eye directly. 

It may be noted that this is not the case in the methods using directed 
light [ 13,141 : the reconstruction can be accomplished only by means of an 
optical system which entirely covers the surface of the hologram, since the 
area of the reconstructed image is directly proportional to that of the hologram 
used. 
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8. Reproduction of Holograms 

We shall conclude this chapter by discussing the important problem 
of the reproduction of holograms. This is beset with great practical difficulties 
[ 151. In fact the interference fringes recorded in a hologram frequently have a 
spacing of the order of 1000 lines per millimeter; hence it is impossible to use 
optical systems for reproduction. Moreover, these fringes constitute a three- 
dimensional network (Paragraph 11.5. d) which rules out reproduction by contact 
printing. 

The process of coherent duplication proposed herein consists in using 
the beam directly transmitted during the reconstruction of a hologram H as  the 
reference beam for a second hologram HI, the object for HI consisting of the 
images of H. 

Figure 33. Coherent Copy of 
a Hologram H. When a plate 
H i s  used for the preparation 
of an image as shown on the 
figure, with S representing a 
coherent source of any given 
position, a hologram H' i s  
obtained which is  an identical 
copy of the original, including 
the structure of the three- 
dimensional network recorded 
in the depth of the gelatin. 

(11.64) 
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Let us consider (Figure 33) a hologram 
H whose transparency in amplitude is, according 
to (11. l o ) ,  

(11.60) t = 1 -L A A" - 2 A" A 
2 0 p  2 0 p '  

This hologram is reconstructed by illum- 
inating it with wave A * it then transmits the 

amplitude distribution 
P' 

(11.61) A = t A  . 
i P 

Plate Ht placed behind hologram H records the 
intensity 

I =  IA. i L  
1 

(11.62) 

and its amplitude transparency 

4 2  (11.63) t' = I 

becomes, using the same approximations a s  those 
which led to (11.60)' 

n n 

t f = l + L A  A " + - f A " A  . 
2 0 p  2 0 p  



Except for some constants, this expression is the same as (11.60) ; hence we 
have obtained a copy of hologram H. The quality of the reconstructed image is 
practically identical to that of the original, and the degradation due to the fact 
that the copy registers, in addition to its own background, that of the original 
as well, is not perceptible to the eye. 

It is shown, moreover, that plates H and H1 need not be in contact, and 
that the copying wave may be chosen at random, as long as it is coherent and 
originating from a point source. 

A 

9. Conclusions on Holography 

Holograms have two main functions: 

a)  They permit the recording, on a photosensitive material, of 

b)  They permit the summate in phase and amplitude several 

both the amplitude and the phase of a coherent light wave; 

coherent waves recorded successively. 

The first property makes the hologram a remarkable data storage sys- 
tem while the second represents a veritable data-processing operation. 

In this chapter we have listed a number of other properties and applica- 
tions of holograms, but have reserved the applications to the filtering of spatial 
frequencies. The fact of being able to record an optical wave representing a 
complex function, e. g. , a Fourier transform, permits one, in effect, to obtain 
photographic transparencies which may act as complex filtezs in coherent 
optical filtering. 

Thus it is possible to develop certain applications of this method which 
had existed only potentially before the discovery of holograms, This will be 
discussed in Chapter IV. 

111. F ILTERING O F  SPATIAL FREQUENCIES 

1. The Possibilities Inherent in the Method 

Ever since its discovery in 1953 [l] , the filtering of the spatial 
frequencies in coherent light has been considered for a number of applications 
aimed, in particular, at the improvement of optical images [ 5-7, 161. 
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This method has acquired an increased significance at the present time 
as a result of the new prospects which are opening up for this method in the 
optical treatment of data. This situation is due to several factors: 

a) Theoretical possibilities. A coherent optical system establishes 
between three functions of two variables - the signal f (x, y) , the percussional 
response h(x,y) of the system, and the response r (x ,y )  to the signal - a very 
general linear correspondence: a convolution relation. 

Now a number of mathematical operations are but special cases of 
convolution, no tab ly the integration, differentiation, correlation, self - 
correlation o r  the scalar product of two functions; 

effectively carried out (as we shall see some examples of this in Chapter IV) 
not only for real and positive functions but also for complex functions. 

b) Experimental possibilities. A l l  these operations may be 

Experimentally, the operator "convolution by h( x, y) " is applied to 
f (  x, y) in Fourier's space: this reduces simply to placing a filter into the 
spectral plane of the optical system. 

The gas laser and the holograms which permit the recording of com- 
plex functions greatly facilitate the realization of some of these filters o r  the 
material representation of complex functions. 

In this chapter we summarize the aspects of optical filtration which will  
be used later on, and give an example of application which may serve for the 
treatment of the photographic plates of bubble chambers. 

2. The Mathematical Bases of Optical Filtering 

Optical filtering in coherent light may be justified by purely 
mathematical considerations. 

In effect, the problem consists in finding the law of correspondence 
between a two-dimensional signal f M 

by an optical system defined by its percussional response h( M) . 
and the (filtered) response r( M) given ( 0 )  

To this end it is sufficient to assume that 

a) the transformation is linear; 

b) the percussional response h(M) of the instrument is invariant 
by translation. 

(111.1) 
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Condition (111. lb )  means that i f  the signal is Dirac's pulse 6 M ( 0) and 
if 6(Mo) gives the response h( M) , then the pulse 6 M MI , displaced by MI 

by translation, gives the response h(M - MI).  It is shown [ 17,181 that condi- 
tions (111.1) entail the law of correspondence. 

( 0 -  3 
(111.2) r ( M )  = f ( M )  Y h(M) . 
This convolution product is written, after a Fourier transformation, as follows, 
with R( Q)  , F( a) and H( Q )  being the Fourier transforms of r ( M) , f (Mo) and 

h(  M)  , and Q(u, v) the general point in Fourier's space. 

(111. 3) R ( Q )  = F ( Q )  H(Q)  . 
From this it is deduced that the correspondence between f Mo and r ( M )  is a 

linear filtering which follows the following scheme (0 signifying multiplication) : 
0 

F. T. 

Response 

F. T. 

Spectrum 
(111. 4) 

Signal analysis 

Filter 

The preceding reasoning does not make use of any physical mechanism. 
It is applicable to the case of both coherent and of incoherent illumination, 
provided the conditions (111.1) are satisfied. However, in incoherent illumina- 
tion, the Fourier spectra F (a), H( Q) have no physical meaning. The case is 
different in the case of coherent illumination: in that case the scheme of 
(111.4) may be realized by double refraction. 

3. Double Refraction 

a. Process 

The treatment (111.4) may be carried out optically in a restitutor 
by double diffraction [18]. The signal produces, by means of a first diffraction, 
a Fourier spectrum which, when filtered, gives (restitutes) the response by 
means of a second diffraction. 
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In reality the signal gives, in the spectral plane, the product of the 
Fourier spectrum and a spherical phase term (Paragraph I. 4. a) .  To obtain 
a linear filtering, i. e. , to accomplish the conditions (111.1) , it is necessary 
to compensate this factor. This may be done by a convenient arrangement of the 
optical system [ 191 (also Paragraph IV. 3. b) . 

Then it is possible to neglect the phase term in the filtering process 
[Note: The compensation is effective only at the end of the treatment process, 
in the plane of the response (image) ; hence when a holographic recording is 
made on the level of the spectral plane (Paragraph IV. 4. a) , it will  be necessary 
to take into account these terms which a re  recorded in the form of holographic 
lenses, with their aberrations. ] 

This process consists of three phases which will  be recapitulated below; 
the proofs will be given in Appendix 1. 

(1) The Restitutor. This consists of an object plane (signal) 
I1 , a spectral plane $, and a response plane (image plane) I1 (Figure 34). 
0 

Y 

Y 

Figure 34. The Restitutor Operating by Double Diffraction. Obiect f M, is  
arranged in plane 11,; it is illuminated by the convergent beam originating 

from lens L o  and gives by means of a f i rst  diffraction, i n  plane 5, the 

Fourier spectrum F(S2). The latter is f i l tered by a f i l ter  H(S2) situated i n  S, 
and gives by means of a second diffraction, in plane I I ,  the image of I I o  
through lens L, the fi l tered response r( M) = f(M) .Ir h(M). 

46 



The optical system consists, schematically speaking, of spectrum 
analyzer lens L and of a restitution lens L. 

0 

The signal to be filtered is generally recorded on a photographic 
emulsion whose transparency in amplitude t (Appendix 2) is proportional to 
signal f(Mo). 

(2)  Spectrum Analysis. The signal f M is placed in object 

plane II having a general point M . It is illuminated by a convergent 

beam originating from lens L 

0 

0 

0' 

The plane normal to the axis at the point of geometric convergence S 
of the beam is the spectral plane 3. The position vector in this plane is 
P(xl, yl) or ,  in reduced coordinates (Paragraph I. 4. c)  , 

(111.5) 52(u, v) = P / h  d, 

where d is the distance between planes II and 3, and h the wavelength. 
0 

Under the effect of the convergent illumination, signal f M ) diffracts 
01 

a wave; the latter forms in plane S a  luminous distribution which is the Fourier 
spectrum F(O) of f 

(III. 6 )  

save for a phase factor. 

(3 )  The Filtering. A filter is placed in plane 5 whose 
transparency in amplitude is H(W) . Actually, in a limiting case, this filter 
may be a simple aperture. 

Af te r  passing through the filter the amplitude of wave F(  52) becomes 

( 111. 7) 

b. Restitution 

To ensure condition (III. 1) and to compensate the phase factor 
in (III. 6) , the restitution lens L should have its entry diaphragm in the spectral 
plane 3. This is shown schematically on Figure 35 by a thin lens, placed in 
plane 3. The transverse magnification of L will be standardized at y = +l. 
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\ 

Figure 35. Restitutor Operating by Double Diffraction. To ensure the 
conditions of linearity and invariance by translation, the diaphragm of 
restitution lens L must be placed in the spectral plane 5. 

After passing through L, the wave (111.7) gives by means of a second 
diffraction the following response on image plane 11 having a general point 
M(x,y) : 

dO F(O) H(S2) e 2 n i  O.M r ( M )  = (111. 8) 

which is the inverse Fourier transform of the filtered spectrum: 
5 

(111.9) 

Let h(  M) be the percussional response of filter H( O) : 

which represents, physically, the distribution of the amplitudes in the image of 
a point luminous object placed at the origin of plane Ii . 

0 

Applying the convolution theorem to (111.8) we then obtain 

(111.10) r ( M )  = f ( M )  Y h(M) 

To sum up, we have: 

signal spectrum filtered spectrum response 
F.T.-l 

(111.11) H@)-h(M) 
filter 
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4. Properties of Spatial Fi l tering 

a. The Spatial Frequencies 

The spectrum analysis correlates with each elementary sinusoidal 
component of the object f M 

amplitude of the light wave at this point is proportional to the amplitude to the 
elementary sinusoid. 

with point Q of the spectral plane, and the ( 0) 

In effect, let us  take such a sinusoidal component f M of period p, 

and a unit vector U (Figure 36) normal to the Wries" of the sinusoid. In a 
complex form we have 

0) 

( 111.12) f(Mo) = a exp (2 7r i p U . M 
0 

We say that the spatial frequency of the object f is l / p  or ,  to take 

the orientation of the object into account, U/p. 

Figure 36. The  Spatial 
Frequencies. ,The object f , 
(Mol  = a exp 2 x i (U/pI.Mo , 
of spatial frequency l /p,  
gives in spectral plane 3, a 
spectrum which, when f(Mo) 

i s  unlimited, i s  a point P 
whose position in reduced 
coordinates is  52 = U/p. If 
the object i s  not unlimited, 
this point i s  the center of a 
diffraction spot. 

In the spectral plane we obtain the 
Fourier transform of (111.12) 

F(Q)  = a Jn0exp[27riM 0 .(: - a)] dM 0 

which is the Dirac distribution F( 52) 

= a 6 (a - i). This represents a point 
U with amplituae a and situated at W = - 

i.e., at a distance from the center of the 
Fourier plane which is equal to the spatial 
frequency l/p. 

P '  

Coming back to the simple coordi- 
nates in the spectral plane, with P = AdQ 
we have 
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in other words a point of the spectral plane 3 situated at P = (hd/p) U whose 
distance from center S is proportional to the spatial frequency and to the dis- 
tance d between planes 11 and S. 

0 

Thus the center of the spectral plane corresponds to the continuous 
component of the object and the edge at the high frequencies. 

NOTE. If, instead of considering the expression (111.12) , which is the 
result of a decomposition of the object into complex sinusoidal components, 

we had considered the real  sinusoid f M = 1 + cos ( 2 T - . Mo) , we would 

have obtained the frequencies !2 = 0, corresponding to the continuous component, 
and Q = f U/p corresponding to the, decomposition of the cosine. 

( 0) 

b. The Cutoff Frequency 

If the filtering function H(Q)  reduces to a simple aperture 
(the entry diaphragm of L, of transparency 1 and of radius R or R/hd in reduced 
coordinates) , it only permits the passage of spatial frequencies such as I Q I 
= l / p  5 R/hd. The spatial frequency l / p  = R/hd is the cutoff frequency. 

The period of the corresponding "cutoff" sinusoid is seen from the 
center S of plane 5 at an angle a! = p/d = A/R, which is the classical "resolving 
powerf1 ( in  coherent light) due to the diffraction. A l l  the spatial frequencies 
such as l / p  < R/hd are  transmitted without alteration, since H(Q) =.l in the 
diaphragm; the instrument is a low-pass filter with a flat band. 

Below the attention is devoted to the data-treatment aspect and not to 
the power of resolution. Hence it will be assumed that all the useful frequencies 
are transmitted by the diaphragm. 

This means, in particular, that if H( a) = 1 we have (expression 111.9) : 

r ( M )  - f ( M ) .  

The response is identical to the signal. 

5. An Example of Application 

To conclude this general part of the discussion it may be useful to 
give a simple example of optical filtering, which may find an application in the 
treatment of photographic plates of bubble chambers. 
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Figure 37. Extraction of Straight Lines by Optical Filtering. When 
the Fourier spectrum of the object (above) i s  f i l tered by a f ine s l i t  
passing through the center'of the spectral plane, there remain i n  the 
image plane of the restitutor only the straight l ines normal to the 
s l i t .  By turning the sl i t ,  a l l  the l ines of the object are successively 
extracted. By contrast, i f  the f i l ter  had consisted of aD opaque line, 
the l ines of the object normal to the f i l ter  would have successively 
disappeared . 

These plates comprise essentially parallel traces produced by the 
exciting particles. It may be advantageous to 'k1eanserf the plate of these 
traces, o r  on the contrary, to bring them to light. 

gives, regardless of its position in the object plane, a spectrum concentrated on 
a l ine L' normal to L and centered on center S of the Fourier plane. 

This can be done quite simply, because a long and fine straight line L 

To eliminate L and all straight lines parallel to L, it is sufficient to 
eliminate L'; to ensure that only lines L will  appear it is sufficient to allow 
only L' to pass through. Figure 37 shows the result obtained when a slit is 
rotated in the spectral plane: straight lines L normal to the slit successively 
appear in the image. 
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IV. PATTERN RECOGNITION BY F ILTERING OF SPATIAL FREQUENCIES 

1 Introduction 

Pattern recognition consists in detecting the presence and localizing 
the position of a signal in the presence of other signals o r  in the presence of 
noise. An example of such a process is the identification of characters or 
words in a text. 

It may appear that an optical self-correlation carried out on the signal 
would furnish a convenient means for accomplishing the identification. 

However, the methods using self-correlation lead to ambiguities, and 
it frequently happens that the object identified is different from that sought. 

To remedy these disadvantages a method has been proposed which is 
characterized by a low probability of false alarm [ 20, 211. 

To this end the object to be treated (signal to be identified + noise) is 
subjected to a transformation which permits the survival of only the lines of 
discontinuity of the object, o r  more generally, the zones which exhibit a rapid 
variation of amplitude. 

The object transformed in this manner is then correlated with a signal 
model which had undergone the same transformation; the result of this is an 
identification with a high signal/noise ratio. 

The transformation is obtained by the use of suitable differential oper- 
ators. The complete identification treatment and, in particular the differen- 
tiation operations are  easily carried out in coherent light on the basis of the 
properties of the Fourier transformation and of the filtering of spatial frequencies. 
It may be noted that this is a general method, and that it is j u s t  as easy to 
construct a filter leading to the identification of a complex object as a filter 
identifying a simple object. 

2. Principle of Pattern Recognition 

Let us consider a two-dimensional signal s in the presence of 

an additive noise b Mo . Using the notations of Chapter 111, this corresponds 
to the object 0 
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The problem consists in detecting the signal in the object. This may be 
done by filtering the spatial frequencies according to the scheme of Paragraph 
111.2 as follows: (Note: When there is no ambiguity, the subscript "0" relating 
to the object will be dropped. 

r ( M )  of the system consists of two terms. The first term is 

object f ( M )  = s ( M )  + b ( M )  

F. T. I 
spectrum F(9) = S ( 9 )  + B ( 9 )  

I 
@- H ( 9)  filter 
I 

filtered spectrum R(9) = S ( 9 )  H ( 9 )  + B ( 9 )  H ( 9 )  

1 F. T.-' 

response r ( M )  = s ( M ) *  h(M) + b(M)* h(M) 

the convolution product r = s (M) * h(  M) , which is the response in II due to 
signal s (M) . S 

The second convolution product r = b(M) * h(M) is the response due b to the noise b ( M )  . 
In general, r and r are  no longer images but distributions of luminous 

S b 
amplitude. 

In actual practice, the identification of the signal s (  M) consists in 
finding a filtering function H( 9 )  which would furnish in the image plane 11 
(Figure 34) a distribution of illuminations E = Ir (M) l 2  whose maximum E 
indicates, without ambiguity, 

S m 

a) The presence of the signal in the object; 

b) The position of the signal (Figures 38 and 47). 

This implies that the signaynoise ratio must be sufficiently high. 

It is possible to determine from scheme (IV. 2) - without for the time 
being specifying H (9) - some general properties of pattern recognition. 

a. The SignaUNoise Ratio 

Let us assume that function H( 9)  has been determined. H( 9)  is 
the Fourier transform of the percussional response h(M) of the optical system 
{provided with filter H( 9)  3 : 
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F. T h(M) & H(Q) 

According to (IV. 2) the response in plane II is 

r ( M )  = s(M) * h(M) + b(M)* h(M) 

Let Ir l 2  and Ir l 2  be the maximum illuminations which correspond to these sxn b m  
responses. The signal will be detected if r 
if the signaynoise ratio I SI& , o r  more precisely, ’ Irb Im 

( 1 %  is sufficiently large so.that the contrast c = 2 + Ir 12 ) 12 m - trb I&)/ ( lrb l m  s m  
can be measured. Figures 5 5  and 56 give examples of such measurements. 

b. Automatic Positioning of the Response 

The properties of (111.1) of linearity and invariance by transla- 
tion have two consequences. 

(1) Translation. The filter, designed for the recognition of 
signal s (M) , will also recognize the signal after a translation of MI in its plane; 
the response in plane I3 is simply translated by the same quantity Mi (Figure 
3 8 ) .  

sum of the signals, Zn s (M - M ), will n 
give the response Zn r 

Property (2) is obvious; property (1) can be readily proved. 

Let us take a signal s (M) situated, for the sake of convenience, in the 
center of the object plane (Figure 3 8 ) .  

Let 6 be the Dirac distribution. We know that 6 is the unit operator of 
the convolution. 

Consequently, the response r (M) to signal s ( M )  (scheme Tv. 2) is 
S 

written as r (M)  = s (M) * h( M) * 8 (M) , which becomes, for the translated 
signal s ( M  - MI): 
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OBJECT PLANE IIo IMAGE PLANEI I  

Figure 38. Automatic Positioning 
of the Response. In coherent 
optical filtering, for any given filter, 
i t  i s  deduced from the properties of 
l inearity and invariance by translation 
of the percussional response of the 
optical system that a) a translation 
of the signal i n  the object plane 
produces the same translation of the 
response in the image plane; and b) 
the sum of n signals gives the sum of 
n responses. 

= s(M)* h(M) * 6(M - Mi) 

= r s (M - Mi) 

o r  the translated response. 

The physical meaning of this is 
clear. 

The filtering process is written for 
the nontranslated signal s (M) : 

F. T. 
a)  spectrum analysis, s(  M) -) S (  3) ; 

b) filtering by H(S2), R(S2) = S(3) H(Q) 

c) restitution, R(S2)- s(M)* h(M) F. T. 

and for the translated signal s ( M )  - Mi) : 

F. T. 
a)  analysis, s ( M  - Mi)-S(3) exp(-2 n i  3. Mi) ; 

b) filtering, S (  3) H( 3) exp( -2 n i  3. Mi) ; - 
R ( 3 )  

. I  

F. T. " 
c) restitution, R(  3) exp( -2 n i  3. Mi) 4 M  - Mi).  

This means that translation Mi introduces, in the Fourier plane, a 
linear phase term containing Mi, which is preserved after filtering and which 
places the response in position. 

Figure 52 gives an example of recognition by a filter designed for 
identifying the character rrerr: all  the rTerslr of the text are identified with their 
relative posit ion. 

55 



3. The Self-Correlation Method 

One method of approaching the problem of pattern recognition 
consists in optimizing the signal/noise ratio in the exit plane of the system. 
This leads to the theory of the adapted filter [ 221. 

However the adapted filter can only operate correctly if the noise is not 
correlated with the signal, o r  is correlated only to a slight extent. Especially 
for the recognition of letters it is possible to obtain, in the case of similar 
shapes, a response that is more perceptible for the noise than for the signal 
sought. 

It is only in  certain limited cases that we obtain an indication of 
presence with a high probability. Nevertheless, it is necessary to discuss 
the method of self-correlation, because the adaptation of this method which 
we have made, notably by constructing hologram filters with low aberrations, 
will  be useful in the differentiation method discussed in Paragraph IV. 6. This 
method makes it possible to strongly decrease the probability of false alarm 
when the correlation between the signal and the noise is high. 

The adapted filter. It is shown [ 16,231 by a reasoning analogous to that 
used in radar technique for the treatment of temporal signals, that the two- 
dimensional filter which optimizes the signal/noise ratio in the search for a 
signal s (M) is proportional to 

( IV. 4) H(Q) = S'" (a)/ IB(Q2) 12, 

or  the quotient of the conjugate complex of the Fourier transform of the signal 
and the spectral density of the noise. 

In Paragraph IV. 5 we shall show that function 1/ 1 B(Q)  l2 cannot be 
realized physically; hence we a re  led to the approximation 

(IV. 5) IB(a2) l 2  = constant 

and filter (IV. 4) becomes 

(IV. 6) H(Q) = S* (a )  

which gives the percussional response 
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hence if ,  in response r ( M )  = s( M) 

we substitute S* ( -  M) into h( M) , we obtain 

h( M) due to the signal (scheme IV. 2 )  , 
S 

(Ne 8) 

and, in an explicit form, 

rs (M)  = s (M)*  s'* (- M) 

which is the self-correlation function of the signal. We know that a self- 
correlation function has a maximum modulus at the origin, o r  

To be sure, the translated signal s (  M - Mi) will give a translated signal 
rs( M - Mi) having the same maximum but situated at the point M = Mi instead 

of at the origin. 

Likewise, response r = s(M)* h(M) due to the noise becomes b 
(keeping in mind IV. 7) rb = b (  M) * s* ( -  M) or ,  in the explicit form, 

r = sn b M 0 $(Mo -M)dM 0 . 
0 

b 

What conclusions can we draw from these expressions? 

a)  In the case of a white noise condition ( IV. 5) is satisfied and 
the signavnoise ratio (IV. 3) becomes [ 231 

energy in the signal 
= spectral (energy) density of noise 

In actual practice it can be said that condition (IV. 5) is assured when 
the signal is only slightly correlated with the noise. 
of the extraction of words (signal) which a re  only slightly correlated to the 
noise (text). 

Figure 43 gives an example 
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b) If the noise is not white, which is often the case in practical 
problems, no conclusion can be drawn at all. It will be seen (Paragraph IV. 5) 
that the response due to the noise may then be more perceptible than that due 
to signal. This will  be prevented in the differentiation method. 

4. The Experimental  Arrangement 

The device used both for the differentiation method and for the self- 
correlation method consists a) 
which furnishes Fourier filters, and b) a restitutor which identifies the signals 
with the aid of the preceding filters. 

of a holographic assembly based on [ 231, 

a. The Fourier Holographic Filters 

Let us  take a model s of the signal whose presence in object 
is to be detected. We have 

s (Mo) ,=+ S (  8 ) .  

To make the identification we need (expression IV, 6 )  a filter whose transparency 
is the complex function t = S':' (8) . Except for certain very simple cases, it is 
impossible to realize such a function by currently available means (absorbent 
and dephasing deposits) . By contrast, the holographic technique lends itself 
well to this operation [23] .  

To this end an assembly is constructed (Figure 39) which gives hologram 
filters with very low aberrations. 

A spectrum analyzer, identical to that of the restitutor of Figure 34, 
gives in plane 3 the Fourier spectrum of a signal model s M 

plane ll . A part of the laser beam serves for forming a reference wave (shown 

cross-hatched) which is superimposed on the spectrum. The following reason- 
ing is valid for any position of the reference source M but it will  be assumed, 

to simplify the proofs, that point M is situated in the object plane I'I . P 0 

situated in ( 0) 
0 

P' 
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Figure 39. Hologram Filters: Recording Assembly. A spectrum 
analyzer, identical to that of the restitutor of Figure 35, gives i n  
plane 5 the Fourier spectrum of the signal situated i n  object plane 
11,- Part of the laser beam .$ serves for forming a reference beam 
(crosshatched) originating from point M P situated in plane 11,. 
The photographic recording of the phenomenon in plane 3 i s  a 
Fourier hologram. 

1) The signal diffracts on the spectral plane not the Fourier 
transform S( Q )  of s ( M  ) but (Appendix IV. 1) 

0 

A ( Q )  = S(Q)  exp icp , 
0 ( 0) (lv. 11) 

the phase term exp(iqo) is independent of the nature of the signal; it is 

automatically compensated in a restigutor operating by double diffraction. 
However, in the present case where we use solely the spectrum analyzer part 
of the restitutor, this term persists and must be retained in the formulas. 

2) The carrier wave originating from point M gives on 
P plane 5 the following amplitude, standardized to module 1: 

(IV. 12) A p W )  = exP(icpp). 

The phase cp ( Q )  characterizes the spherical reference wave, i. e. , the 

position of point M 

3) The photographic plate in 5 records the total illumination 
due to (IV. 11) and (IV. 12) . The hologram obtained in this manner presents, 
according to expression (11.10) , the transparency 

P 

P' 

(IV. 13) 
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which becomes the following expression, keeping in mind (IV. 11)  and (IV. 12)  
with the variable $2 instead of P used in Chapter 11, and neglecting the constant 
-y/2 which is of no importance, 

(IV.14) t = 1 + S(S2) exp 

Let us  make cp and cp explicit by taking S as the origin of the phases (Figure 
0 P 39) * 

According to Appendix 1, cp represents the phase on S of a spherical 

wave of radius d having its center at 0, o r  
0 

(IV. 15)  cpo=7rhdQ2. 

Likewise, but by definition, q represents the phase on 5 of a spherical 
P 

wave originating from point M which -- let us recall -- is situated in plane ll . 
Whence, by a simple calculation, 0 

=7rhdQ2-27r$2 .M . 
P 

(IV. 16) 

A s  a result (IV. 14) becomes 

(IV. 17) 

Note that, independently of the use as a filter, this hologram makes 
it possible to reconstitute the recorded object o r  in this case the signal model 
to be identified. 

Figure 40 shows such a restitution for the signal consisting of the word 
The two images -- direct and conjugate -- are both virtual because "filtrage. 

of the arrangement of Figure 39. Such a hologram is called a Fourier hologram, 
because the recording is carried out in the Fourier plane. Hence it is necessary 
to use the whole surface of the hologram in order to reconstitute the object 
correctly, contrary to the holograms in diffuse light. In effect, with only one 
portion AQ, only the corresponding frequency band of the object can be recon- 
stituted. 

b. Restitution (Identification of the Signal) 

In the restitutor (Figure 41) the object (= signal + noise) 
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Figure 40. Percussional response of the f i l ter  used for the recognition 
of the word 'filtrage* in Figure 43. 

(IV. 18) 

is introduced in object plane II . 
f(Mo) = E(Mo) + b(Mo), 

0 

11" 

Figure 41. Pattern Recognition by Self-Correlation. The signal to be 
identified (in the presence of noise) i s  introduced in object plane I I o  
of the restitutor. The Fourier hologram f i l ter  i s  arranged in the spectral 
plane S. In the image plane we obtain, as i n  the case of an ordinary 
hologram, three spatially separated terms: rs(M) = self-correlation 

+noise; s(M) = signal + noise; r 1 (M) = self-convolution +noise. The 

useful term i s  the self-correlation function of the signal. 

Filter (IV. 17) is introduced into the Fourier plane 3. 

In that case three responses a re  obtained in the image plane I& 
corresponding to the three terms of (IV. 17), and in particular the response 
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sought, i. e. , the sum of the self-correlation function of the signal r (M)  
S 

nd the noise-signal correlation function r (M)  b 

To prove this, it is sufficient to follow the filtering scheme (expression 
IV. 2) or, by doing our reasoning on the signal, for example, 

(Iv. 19) 

Function H ( Q )  is the expression (IV. 17) and, since the system is linear, it 
is sufficient to consider the three terms of (IV. 17) separately. 

(1) The Self-Correlation. The third term of (IV.*17) is 

H ~ ( Q )  = S* ( a )  exp(- 2 n i  Q.M ); 
P 

but 

F. T. 
S(Q)  s*< ( Q )  b s ( M ) *  s* ( -  M) = r s ( M )  

and 

(IV. 20) 
-1 

*r (M - M ~ )  . F. T. s s9$ exp 2 7~ i Q.M P S 

Thus the contribution of the third term of (IV. 17)  is the self-correlation 
function sought but, instead of having for center the origin of plane II, it has its 
center at point 

(Iv. 21) M = M ,  

i. e. , on the image which would be produced by the reference source on plane 
11 if this source were  present., 

P 

On Figure 41 the magnification is not standardized at y = + 1 as in the 
formulas, but where y = - 1, r (M) has its center in M = - M . 

S P 

(2) The Self-Convolution. The second term of (IV. 17)  is 

(IV. 22) H ~ ( Q )  = s * ~ ( Q )  e x p k  n i  Q.M ). 
P 
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Let us now set 

(IV. 23) 

In plane IT we obtain 

(IV. 24) 

r i ( M )  = s ( M ) *  s ( M ) .  

is the self-convolution function of s (M)  , with its center in 

(IV. 25) M = - M  
P 

which is symmetrical to the center of the self-'correlation function. 

The term "having its center" is actually inaccurate because, while a 
self-correlation function exhibits a maximum at the origin here M 
possesses the symmetry property ( P) and 

(Tv. 26) lrs(M - MP) 1 = Irs(Mp - M) I, 

this is not so for the self-convolution function which possesses these two 
properties only for a symmetrical s (M) . 

(3) The Central Term. The first term of (IV. 17) gives 

(IV: 27) 

The signal is re-encountered in the center of plane 11. In reality, in expression 
(IV. 13) of the transparency of the hologram we have neglected ( Paragraph 
11.2) certain terms, the result of which being that we obtain a slightly perturbed 
signal. 

The three responses a re  separated in plane 11, provided that we take a 
sufficiently large inclination of the carrier.  In actual practice this occurs for 
(Figure 39) 

(IV. 28) OM > 2 1 ,  

where 1 is the half-object field. 

P 

In the same fashion, the noise in the object (Tv. 18) will give the three 
terms 
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(IV. 29) btM) in the center, 

(IV. 30) 

(IV. 31) 

b(M) * s* (M - M )  around M 

b(M) * s(M + Mp) around - M 

P' 

P' 

c. The Experimental Results 

Figure 42 shows the assembly of the filters and of the restitution 
device. 

Figure 43 gives an example of the recognition of words in a text; the 
responses are the maxima of the corresponding self-correlation functions. 
Figure 44 shows the "noise" due to successive superimpositions of the response 
(recognition of the word "filtrage'!) . 

It can be seen that for these examples the self-correlation method works 
well, because the words to be recognized are  little correlated with the rest 
of the text, but it is quite obvious that if the noise-signal correlation is great, 
there will  be ambiguity. This is notably the case with the recognition of isolated 
letters in a text; for example the identification of the letter I by self-correlation 
will also give undesirable responses for the letters which contain the I, i. e. , 
B, D, E, F, H, K, L, M, P, R, T. 

This circumstance is analyzed in Paragraph IV. 5, and the solution which 
avoids the ambiguity is discussed in Paragraph IV. 6. 

d. Notes 

(1) Realization of the Fourier Filters. If during the recording 
of the filter the reference source M is situated in the object plane 11 (Figure P 0 

39) , the three responses of Paragraph IV. 4. b will form, on reconstruction, 
in the same plane IT. However M may be assigned any given position outside 

plane 11 

responses are formed in different planes. 

P 
hence holographic lenses are recorded as a result of which the three 

0' 

(2) The Aberrations of the Filters. If the optical system 
presents aberrations, the signavnoise ratio may be considerably reduced. 
The same applies if the Fourier filters are aberrant. 

To study the influence of the filters in this sense we must consider the 
as s embly cu nsisting of filter and restitutor . 
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Figure 42. The restitutor and the assembly of Fourier filters. 

\ 

Figure 43. Identification of a word in a text by self-correlation: a )  
identification of the word ‘des,’ b) identification of the word ‘filtrage. 
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Figure 44. Aspect of Noise. Successive superimpositions (from bottom 
to top of the figure) of the response in the identification of the word 
‘filtrage.’ During the measurements, results of the type shown in Figures 
55 and 56 are obtained. 

In the study carried out so  far, all the phase terms have been developed 
to within the second order, which amounts to resorting to the paraxial approxi- 
mation. 

Now, it may be shown that, without carrying out any approximations and 
for any given position of the reference source M 

(IV. 20) with highly reduced aberrations, within the limits of validity of the 
Fourier formalism in optics. 

we obtain the useful response 
P’ 

To this end it is necessary that this formalism be effectively realized: 
this is the case of the device with convergent light which has been used 
(Appendix 2 ) .  Moreover it is necessary, for the correction of the holographic 
aberrations, that the spectrum analyzers of the restitutors and of the recording 
device of the filters be identical. In particular, the coma and the spherical 
aberration are then strictly zero. 

(3)  The Formalism in Pattern Recognition. In this case, it 
is sufficient, on the basis of the preceding results, to consider only the useful 
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response (IV. 20) and the corresponding noise (IV. 30), and to neglect the 
translation (due to the inclined reference wave) of the response in the image 
plane. The filtering scheme is then written as 

r s ( M )  = s ( M )  y s" ( -  M) 

+ rb(M)  = b(M) + s* ( -  M).  s ( M )  + b(M) - F. T. S(Q) + B ( a ) - ~  { signal noise spectrum 

(IV. 32) sg in) 
filter 

5. Introduction to Identification by Differentiation 

To show how one may identify a signal with a low probability of 
false alarm, it is necessary first of all to examine the reasons which bring 
about failures in the classical self-correlation method. 

a. The Adapted Filter 

Let us take an object f (  M) = s ( M )  + b (M) consisting of a signal 
s (  M) to be identified -- e. g. , a printed letter -- in the presence of what, by 
extension, will be called noise b(  M)  , i. e. , all the elements of the object other 
than s (M) (the rest  of the text) . 

When we identify the signal by means of a filter of transparency Efg ( a ) ,  
as in (IV. 32) , we obtain in the image plane II a self-correlation function r 

whose maximum ought to indicate a) the presence of the signal, b) the position 
of the signal (Cartesian coordinates of the maximum) . 

S 

However, we obtain also the functions of the signavnoise intercorrelation 
r 

false responses are obtained in this manner. 

and the latter may be much more perceptible than r . Thus a number of b' S 

In effect, in Paragraph IV. 3 we have started out from the adapted filter 

(Iv. 33) H( a) = S'" ( a ) /  IB( a)  1 2 .  

This filter gives good results in radar technique because the noise, 
which originates essentially from the reception chain, is known and it can often 
be considered as white in the reception band. 
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By contrast, in pattern recognition and, in particular, in the case of a 
printed text, the conditions a re  quite different. While the numerator of (IV. 33) 
may be realized by holography (Paragraph IV. 4. a ) ,  the denominator 1/ IB(Q) l2 
cannot generally be realized. In effect, 

1) The noise b(M) is unknown, because we consider as noise 
all the unwanted letters of the text, and this is unknown; 

2) The noise actually consists of undesirable signals of the 
same type as the signal to be identified; they have a limited support and their 
spectrum B ( a) presents numerous zeros. Assuming the noise to be known, 
function 1/ IB l2 can be realized only in a very approximate manner, by replacing 
an infinite transparency by a unit transparency; 

necessary to construct an antinoise filter for each page of the text. 
3) even if  we assume the noise to be known, it would be 

Under these conditions we a re  led to the approximation 

(IV. 34) I B ( Q )  I2 = constant 

Filter (IV. 33) becomes H( a) = SXc ( a )  , and the response becomes, 
according to (IV. 32) : 

whose first term 

r (M)  = s ( M )  Y S *  ( -  M ) ,  
S 

(IV. 36) 

due to the signal is the self-correlation function of the signal, and the second 
term 

(IV. 37) 

is the signaynoise correlation function. 

r b ( M )  = b(M) + s" ( -  M) 

b. The Causes of Failure. 

When the noise is highly correlated with the signal, the identification 
may become difficult and at times even impossible. 

In effect, expression (IV. 37) may be more readily perceptible than the 
self-correlation function (IV. 36) . 
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This is particularly striking in the extreme case where the noise con- 
tains the signal (example: the letter E contains the letter I). For simplifica- 
tion we shall assume that the signal and the noise have an amplitude of 1 in the 
regions s ( M )  and b(M) of respective areas I: and C with I: < Z 

Furthermore, let us  take c (M) as a region common to s (M) and b(M) . S by S b’ 

To sum up, then, 

From this it can be inferred that r and r have the same maximum, which is 
S b 

precisely 

However, while r (M)  is maximum in a region having an area b 

(IV. 40) c = ’ c  - c  
b S’ 

the self-correlation function r ( M )  is maximum only at point M = 0. This 

means that while we look for s (M)  we identify b ( M )  . 
S 

c. Example 

Let us illustrate this by an example. Take a text consisting of the 
two letters I and E (Figure 45a). 

To simplify this demonstration we shall carry out our reasoning in one 
dimension - x - only. 

Let the object be 

(IV. 41) 

the signal to be identified is 

{ IV. 42) 

and the noise 

(Iv. 43) 

f(x) = s(x) c b(x) 

I =  s(x) 

E = b(x) .  
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The distribution of the amplitudes in the object may be represented, 
along x, by two gates of different widths (Figure 45b) . 

I ,-B: 
SIGNAL 

I 

- a ~ a .  

SIGNAL 
X 

4:' 

8. 
#O/SE 

A - b + h - a  ~ 

-20 4-20 -a-b 1 ,  a+b ( c )  
X I 1  I X 

R ES +ON SE R E SPON S E 
s(x)*s*( -x) b ( x ) * ~ * l - ~ )  

Figure 45. Disadvantages of the Method of Pattern Recognition by Self- 
Correlation. The object (a) gives the distribution of amplitudes (b) along 
x. I f  the object o i  l ine (b) is  correlated with s(x), the response (c) consists 
of t w o  terms: 1) a triangle which i s  a self-correlation function of the signal, 
and 2) a trapeze, which i s  a function of the signaI/noise correlation. 

The second term, which i s  much more perceptible than the first, has the 
result that i t  i s  the letter E that i s  identif ied while the letter I is  sought. 
Compare this result with that of Figure 46. 

The response (Figure 45c) consists of a triangle, a self-correlation 
function of the signal, and a trapeze, which is the signaynoise correlation 
function. 

We note that the trapeze is much more readily perceptible than the 
triangle which, in principle, ought to permit the identification of the signal. 
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6. The Differentiation kethod 

a. Principle 

Expression (IV. 40) shows that the ambiguity in the recognition 
is due to the finite surface of the elements considered. Now, a shape is 
generally defined by its contour and, more particularly, by its lines of dis- 
continuity. The zones of constant o r  slowly varying amplitude play a minor 
role i f  it is desired to only recognize the presence and position of an object; 
thus they may be considered as a "noiseff which one may get rid of, notably 
by differentiation. 

Hence a suitable differential operator is applied to the object and the 
differentiated object is correlated with the signal to which the same operator 
has been applied, The differentiation is obtained simply by placing in the 
spectral plane 5 an absorption filter having an appropriate law of transparency. 

This will be made more explicit below in the one-dimensional and in 
the two-dimensional case. 

For the following discussion let us remember that the experimental 
device used is the same as in Paragraph IV. 4, and that the filtering scheme 
adhered to is still (IV. 2) . 

b. The One-Dimensional Case 

The principle of the method will seem more obvious if we went 
back to the example of Paragraph IV. 5. c relating to the case of simple self- 
correlation. 

The object (Figure 46a) is differentiated (Figure 46b) , 

(IV. 41) f f (x )  = ~ ' ( x )  + b'(x) , 

then it is correlated with the differentiated function spk (x) , which gives the 
response 

(IV. 42) r (x)  = rs(x) + rb(x) 

consisting of the response due to the signal sought 

(IV. 43) 

and of the response due to the noise 

( rv. 44) 

rs(x) = st(x) + sf* ( -  x) 

rb(x) = bf(x)  + sf* ( -  x). 
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SIGNAL 

I 
I 

NOISE 

i 

DI F F ERENTl AT ED SIGNAL 
s’(x) 

DIFFERENTIATED NOISE 
b’(x) 

RESPONSE 
s’( x)* s’ *(-x) 

RESPONSE 
b’ (x)* s * ( -X) 

Figure 46. Pattern Recognition by Differentiation. The object (a) shown 
i n  the figure is the same as that of Figure 45. The differentiated object 
i s  shown in  (6). If th is object i s  correlated with a signal model which 
i tse l f  i s  differentiated, we obtain (c) where the useful response exhibits, 
with respect to the noise, a signalJnoise rat io of 2 in  amplitude and 4 i n  
intensity . 
The real signals are generally two-dimensional, in  which case the signal/ 
noise rat io i s  16 for a similar example (Figure 47). 

We then see on Figure 46c that the amplitude of the maximum of r is 
S 

double its secondary maxima, and likewise the double of all the maxima due to 
the noise. 

Hence the signavnoise ratio is 4 in intensity, 

The objects generally considered a re  two-dimensional objects. 
similar example in x, y, the signavnoise ratio is then 16, instead of 1 as  in 
the self-correlation example of Paragraph IV. 5. c. 

For a 

c. Form of the Fourier Filter 

To determine the nature of the filter which leads to the results of 
the preceding paragraph, we must consider the Fourier plane. Let u be the 
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reduced variable in this plane. We then have, starting from the desired 
response, 

(IV. 45) 4 7r2 u2 S(u) (u ) ,  s'(x) y S'* (- x)-- F. T. 

F. T. 
(IV. 46) b'(x) + S" (- x)-- 4 9 u2 B(u) S* (u) ; 

hence the filtering scheme (IV. 2) becomes (except for the coefficient - 4 9) 

which shows that the filter consists of the product of u2 and S* (u) ; i. e. , 
brought about materially through juxtaposition 

a) of a filter of transparency S':' (u) , which may be realized by 

b) a filter whose law of transparency in amplitude is 

holography ( Paragraph IV. 4. a) , and 

2 (IV. 48) t = u ,  

o r  a parabolic transparency having a minimum 0 in the center. 

This is possible, because the spectral plane s is limited by the entry 
diaphragm of lens L. If u 

transparency in amplitude 

is the radius of this diaphragm, the filter has the 
m 

(u/u ) in the diaphragm, m (Iv. 49) 

0 outside the diaphragm. 

d. The Two-Dimensional Case 

To transpose the preceding reasoning to the two-dimensional case, 
it is necessary to differentiate the object f (M)  and the percussional response 
s':' ( -  M) of filter S" (a )  with respect to x and y. Then any differentiation will 
give a result. However, it is clear that the optimum operation is that which 
makes the "lines of the greatest slope" appear in the luminous distributions 
f ( M) and s':' (- M) . This is obtained by the gradient operator 

(Iv. 50) 
- _I_) 

f (M) +grad f (M) , s4' ( -  M) +grad s* (- M) . 
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. This gradient apparently has no physical meaning if considered in 
isolation. However, this is not so if we consider the whole recognition process 
in its entirety, 

It is then shown (Appendix 3) that, i f  the diaphragm of lens L of the 
restitutor has a radius Q , the two-dimensional filter has the form (also 
Paragraph IV. 6. c) m 

H(Q2) = (Q/Qm) S’$ ( Q )  in the diaphragm 

H(Q2) = 0 outside the diaphragm; 
(IV. 51) 

the response due to the signal then becomes 

(IV. 52) 
- - 

rs = Jn grad s ( M  ) . grad s’* ( M  - M).dM 
0 0 0 

0 

and the noise gives 

- ___) 

rb= SIn gradb(M ) grads* ( M  - M) dM . 
0 0 0 

(IV. 53) 
0 

These expressions a re  independent of the coordinate axes, and the 
detection of the lines of discontinuity depends neither on the form nor on the 
position of the objects, because the expression under the integration sign is a 
scalar product of gradients. 

e. Differentiations of a Higher Order 

In the same manner, if necessary by using a filter with (Q/Q ) m 
we obtain for the signal (A  representing the Laplacian operator) 

r = As(M) + AsJ8 ( -  M) 
S 

(I+. 54) 

and for the noise 

r = &(M) + AS* ( -  M) b (IV. 55) 

The order of differentiations is limited only by the power of the lasers employed, 
because the differentiating filters have a maximum absorption at the center. 

NOTE: An approximate differentiation, which consists in carrying out 
a high-pass filtering, gives satisfactory results in certain cases. 
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f. Experimental Results 

Using the experimental device of Paragraph IV. 4 and the filters of 
form (IV. 51) , the following results have been obtained: 

Figure 47 is the two-dimensional illustration of the gate pulses of 
Paragraph IV. 6.b: a) the signal to be identified is indicated by an arrow; 
b) the response shows the presence and position of the signal without ambiguity. 
The signal/noise ratio is 26 dB (on the recording made with the aid of a film 
of y 2) .  

Figure 47. Method of Pattern 
Recognition by Differen tiation. 
The signal to be identified in 
object (a) i s  indicated by an 
arrow. In the response (b) the 
signah'noise ratio is  26 dB. 

Figure 48 shows two cases of 
fingerprint identification: (a) and (b) 
showing the signal, and (c )  and (d) the 
corresponding responses. 

Figure 49 relates to the identifi- 
cation of fingerprint (a) in the presence 
of print (b) having a very similar form; 
(c )  is the response. 

Figure 50 shows a fingerprint 
and its spectrum; we can see that it is 
difficult to realize such a Fourier 
spectrum by a method other than 
holography 

Figure 51 shows the identifica- 
tion of a letter in a text: in  text (a)  the 
signal to be identifjed is the letter rcerr ;  
the response is shown in (b) , where all 
e's a r e  simultaneously identified accord- 
ing to the properties of Paragraph IV. 2. b 
(automatic position-locating of the 
response) . 

Figure 52 shows an example 
analogous to that of Figure 51, but with 
different characters; in object (a) the 
signal is letter "e, 
response. We shall return to Figures 51 
and 52 later on. 

while (b) is the 

Figure 53 likewise shows the 
extraction of letter "s. 'I 
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Finally, Figure 54 shows the extraction of letter 0 in the presence of 
two similar letters, C and Q; the response in (b) indicates a signal/noise ratio 
of 4 dB. 

g. The Signal/Noise Ratio 

This is greatly improved in the differentiation method, as we 
have seen. However this ratio always remains a function of the experimental 
conditions, and especially of the aberrations. 

Figure 55 shows a microdensitogram of a line of the response (b) of 
Figure 51. 

The text is plotted a t  the bottom of the figure, the letters being 
arranged opposite the corresponding peaks of the response; it is noted that the 
signal/noise ratio expressed in difference of density between the minimum "e'' 
signal and the maximum noise is 0.12, o r  1 .2  dB. 

The experimental device was equipped with good commercial lenses. 

Figure 56 represents an analogous microdensitogram for the response 
of Figure 52; the signaynoise ratio has risen to 8 dB. The principal reason 
of the improvement is the use of a new optical system (calculated by the CERCO 
Company) which has been well corrected for aberrations; the latter are shown 
on Figure 57. 
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Figure 48. Differentiation Method. Identif ication of a fingerprint. 
Recognition of fingerprints (a) and (b) in the presence of fingerprints 
(a') and (b'). Responses (c) and (d) indicate the presence and position 
of fingerprints (a) and (b). 

Figure 49. Differentiation Method. 
Identif ication of a fingerprint (a) in 
the presence of a very similar finger- 
print (b). The response i s  shown in  
(4. 

7. Conclusions on Pattern 
Recognition 

Pattern recognition 
by differentiation consists merely 
in the juxtaposition, in the spec- 
tral plane of a restitutor oper- 
ating by double diffraction, of 

a) A filter whose trans- 
parency is proportional to the 
conjugate complex of the Fourier 
transform of the signal to be 
identified; this filter may be 
.realized by holography; 

whose law of transmission 
entails the application of a 
differential operator to the object 
(signal + noise) and to the per- 
cussional response of the pre- 
ceding filter. 

b)  An absorbent filter 

e 
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xample of an Object and of i t s  ourier Spectrum: a) object; 
b) spectrum. 

igure 51. Method of ecognition by Differentiation. In object (a) the signal 
to be identif ied i s  the letter ‘e.9 The response (b) shows the simultaneous 
identi f icat ion of a l l  the e s oi the text (l inearity of the optical system): the 
responses are formed automatically at  the s i te of the corresponding letter. 

I 1  t 
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Figure 52. Method of Recognition by Differentiation. The signal to be identified 
in object (a) is the letter ‘e.’ Response shown in (b). 
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Figure 53. Method of Recognition by Differentiation. The signal to be identified 
i s  the letter ‘s’ in text (a). Response i s  shown in (b) .  

If necessary, these two filters may be realized on a single support. 

Efforts in this area have been directed essentially at the identification 
of characters in a printed text. The results obtained in this difficult case 
(the letters have very similar shapes and a character represents a small part 
of the total energy of the text) make it possible to envision the extension of the 
method to other types of signals, i. e. , electrical o r  acoustic signals. 
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(a) 

Figure 54. Differentiation Method. Identi f icat ion of the 
the letter 0 among two other, very similar letters: a) = text; b) response. 

l_e f i l t ragg des frequences - - - spatiales - 

Figure 55. The Signal/Noise Ratio.. On this microdensitogram of a l ine 
of the response of Figure 51, the text i s  plotted at  the bottom of the figure, 
and the letters to be identi f ied are underlined. The optical densities are 
plotted along the ordinate axis: The rather mediocre signal/noise rat io i s  
due to the aberrations of the optical system and of the hologram filters. 
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D4 

0,s 

t t  

1- 

- 

0- 

te  - f iLtragg d e s  frgquences - spat ia les  - 

Figure 56. The SignaVNoise Ratio. This  example, analogous to that of 
Figure 55, relates to the extraction of letter ‘e ’  in Figure 52. The improve- 
ment of the signaljnoise ratio i s  due to the correction of the aberrations of 
the optical system and of the hologram filters. 
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y = O  

y = l  I- ' I I / I  1 Y b  

' 4  
-25 0 '  25 

y = 5  

/ 

Figure 57. Lens L o  (or L) of the Restitutor. Wave surface for h = 6328A . 
Tangential focal length (-) and sagittal focal length (----). Abscissa: 
aperture in millimeters; ordinate: deviations A in microns. Half-field 
denoted by y. 
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APPENDIX 1 

A n a l y s i s  of the Fi l tering of Spatial F r e q u e n c i e s  

- r ( M )  = f ( M )  Y h(M) 

signal spectrum I - 
(A. 1) 

response 

by means of the arrangement represented in Figure 58. 

Figure 58. 

It is shown [ 191 that to ensure linear filtering, the restitution lens L 
must have its entry diaphragm in the spectral plane 5. This is schematically 
represented by a simple lens placed in this plane. 

1. Spectrum Analysis. Under the effect of the convergent coherent 
illumination originating from lens L the signal f Mo in plane 11 diffracts, 

on plane 5 having a general point P(x1, yl) ,  the amplitude (expression I. 16) 
0' 0 0 

(A. 2) g(P)  = exp(i k P2/2 d) F(P) , 

where d is the distance between planes 11 and 5 ,  and F( P) the Fourier 
0 

transform of f , In reduced coordinates, with 

(A. 3) Q = P/h d, 
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expression (A. 2) becomes, by writing g (0 )  and F(S2) for g(h d 52)  and F ( h  d a), 

this spectrum is the product of the Fourier spectrum 

F(Q) = sn 0 f(Mo) exp(- 2 T i  S2.M 0 ) dM 0 

and the quadratic phase factor 

(A.  6 )  exp(i 7r h d a2). 

2. The Filtering. After  passing through the filter of transparency H(S2) 
placed in plane '3, wave (A.  4) becomes 

(A.  7) exp(i 7r A d S2') F(Q) H(S2); 

hence term (A. 6) has no effect on the filtering. However it must be compensated 
in order that the restitution operation give a good inverse Fourier transform of 
the product F(S2) H(S2). 

3. The Restitution. It is known that a lens of focal length 1 introduces 
in its plane (plane '3) the phase difference 

(A.  8 )  exp(- i k P2/2 1) , 

or ,  in reduced coordinates 

(A. 9) exp(- i 7r h d2 Q2/1). 

Afte r  passing through lens L, the wave ( A .  7) consequently becomes 

( A .  10) g1(S2) = exp E n h  d2 S2' (-$ --$I F(S2) H(S2). 

This wave gives, by diffraction on a plane at a distance d' from 3, an amplitude 
distribution r( M) , which is obtained by application of formula ( I .  7) relating to 
the Fresnel diffraction. This is written, in reduced coordinates, as 

( A .  11) r ( M )  = g1(S2) expli k(M - h d S2)2/2 d'] dS2 
3; 
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whence, by expanding the exponent and taking (A .  10) into account, 

with 

(A .  13) 

(A. 14) 

hence 

(A.  15) 

q = n h d 2 Q 2 ( $ i ~ - - f ) .  1 

Now, since II and IIare conjugate planes, we have 
0 

Moreover, (A.  12) is the final result of the filtering; at this stage the recording 
is made by a quadratic detector and the phase term 

(A .  16) exp( i 7~ M2/h d') 

disappears. It may therefore be neglected. Hence ( A .  12) becomes 

(A. 17) 

which represents the inverse Fourier transform of the product 

(A.  18) R(Q)  = F(Q) H(Q) 

which, except for a scale term, is magnification h = - d'/d of lens L. 

Standardizingy at 1, we have, as a result, 

(A. 19) 

Therefore the filtering follows the schematic outline of (A. 1) , 
with the phase term (A.  6)  having been compensated and term (A .  16) dis- 
appearing during the recording. 
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Nevertheless, in Fourier transform holography it is necessary to keep 
(A. 6) in mind, and if response (A.  12) must be taken up by another coherent 
system, it is also necessary to take (A. 16) into account. 
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APPENDIX 2 
Definitions Relating to the Photographic Emulsions 

We define the following parameters for the photographic emulsions : 

1. Transparency in Intensity. This is the ratio, T, of the emergent 
fluxes 3 and the incident fluxes % at each point of the emulsion on which the 
image is prepared: 

(A .  20) T = $ / % ,  O s T s l .  

Thus the transparency T varies with each point of coordinates x, y on 
the emulsion, and it defines a function T(x,  y) of these coordinates. 

2. Optical Density. 

(A. 21) D = log(l/T) 

3. Lumination. This is the energy W received by the plate, or  the 
product of illumination E and the exposure time T 

(A.  22) W = E T .  

4. Characteristic (o r  Blackening) Curve. This curve gives the varia- 
tions of density as  a function of lumination (Figure 5 9 ) .  This curve often 
includes a straight-line portion whose slope y is also called contrast factor. 
The straight-line portion has the form 

where Wo is a constant. 

1 
According to ( A .  21) we then 

have T = (W/W0)-', o r  

/ (A. 24) T = C E Y ;  

E is the illumination received by the 
plate and C a constant which depends 
notably on the exposure time, on the 
sensitivity of the plate and on factor y. 

Figure 59. 
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5. Transparency in Amplitude. In coherent optics it is the (complex) 
amplitudes of the waves which intervene; then the transparency in amplitude is 
defined as  the ratio (t) of the emergent amplitude (Al) and incident amplitude 
(A,) at each point of the emulsion on which the image is produced. 

(A. 25) t= AJA,, o 5 It I s  1. 

t(x, y) is a real o r  complex function of coordinates x, y on the emulsion; its 
modulus is less than 1. 

We also have the relations 

(A. 26) T = t t *  

and, for a r e a l t ,  t =  T", o r  
1 

(A. 27) 4 2  t = C ' E  , 

where Ct is a constant. 
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APPENDIX 3 

The Two- Dimensional Differentiating Fi l ters 

Let us take an identification by classical self-correlation 

(A. 28) r ( M )  = f (M) Y s* ( -  M). 

The detection of the lines of discontinuity (Paragraph N. 6.4) leads to the 
determination of the linear differential operators L which, when applied to the 
object 

(A. 29) f ( M )  = s ( M )  + b(M) 

and to the percussional response of the Fourier filter 

(A. 30) S* ( -  M) 

give a result 

a)  independent of the coordinate axes; 

b) independent of the shape of the signals treated, i. e., of their 
position and orientation. 

Now let us express the Dirac distribution by 6(M) = 6(x,y) (see, for 
example [ 171 for the mathematical formalism) , and let the linear differential 
operator be 

+ C  
a n~ 

(am 
+ b - 

axm ayn 
(A.32) L(M) = L(x,y) = 

which, when applied to (A. 29) 

( A .  33) 

The Fourier transform 

and (A.  30), transforms (A. 28) into 

[L*f(M)]  [L*S* ( -  M) I 
L * L * r (M) . 
in !d(u,v) of r ( M )  is 

(A. 34) R(Q) = F(Q) S* (a), 
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The Fourier transform of L is 

N m n 
(A.35) L = Z  a ( 2 n i u )  + b  ( 2 n i v )  + C  ( 2 n i )  rm n P 

L --J 

and that of (A. 33) 

(A. 36) Ri(52) = x 2 R ( 5 2 ) .  

To satisfy (A. 31) it is necessary that E2 have a radial symmetry 

where n is a whole number and a a constant which will be subsequently 
neglected. 

Then the response ( A .  33) becomes 

( A .  37) r l ( M )  = r ( M )  *F. T." {- 4 9 ( u 2  + v ~ ) } ~ .  

Then it is necessary to distinguish between several cases, depending onthe 
value of n. 

1. Example of n = 1. We have 

(A. 38) 
F.?:-' a26 a26 

* b x 2 + a y z  - 4 9 ( u 2  + v2) 

As a result the response ( A .  37) becomes (keeping A. 28 in mind) 

(A .  39) 

This convolution product is distributive relative to the addition and 
to the differentiation, whence 

(A.  40) 

Now af/ax, af/ay and as* ( -  M)/ax, as* (- M)/ay are the components of 

grad f (  M) and grad s* ( - M) ; hence ( A .  40) is written -- by making the con- 
volution products explicit -- as  the sum of a scalar product 

- __c 
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___c - 
( A .  41) ri(M) = Jn grad f(Mo) . grad s* (Mo - M) dM . 

0 
0 

2. Example of n = 2. We have 

* A6 +AS. 
F. T. 16 #(u2 + v2)2 

Then the response (A .  37) is written as 

rl(M) = A6 +f(M) + A6 +s* ( -  M) 

o r  also as 

92 

q ( M )  = S ( M )  + AS* (- M). 
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